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Abstract

Given a boolean function f : {0, 1}n → {0, 1} define the function f ◦ XOR on 2n bits

by f ◦XOR(x1, . . . , xn, y1, . . . , yn) = f(x1⊕ y1, . . . , xn⊕ yn). Such a function is called

an XOR function. A natural communication game for such a function is as follows.

Alice is given x = (x1, . . . , xn), Bob is given y = (y1, . . . , yn), and they jointly wish

to compute f ◦ XOR(x, y). They have unbounded computational power individually

and wish to minimize the amount of communication between them on the worst-case

input.

We study the communication complexity of XOR functions in various randomized

models, and resolve several open questions in the areas of communication complexity,

boolean circuit complexity and analysis of boolean functions.

1) We characterize the weakly unbounded-error communication complexity of XOR

functions in terms of a certain approximation theoretic property of the outer function.

We use this characterization to reprove several known results. Along the way, we also

resolve some open questions in the area of analysis of boolean functions.

2) We prove a strong unbounded-error communication complexity lower bound for

an easily describable function. We then use this to show a boolean circuit complexity

class separation that has been open since the early nineties, and first explicitly asked

in 2005. This also resolves a recent open problem in communication complexity by

separating two communication complexity classes. We also prove a lower bound on

the size required by any decision list of linear threshold functions to compute a simple

XOR function, and prove unbounded-error communication complexity lower bounds

for XOR functions when the outer function is symmetric.

3) Finally, we separate two randomized communication complexity classes in the

‘number-on-forehead’ model of multi-party communication. This also implies boolean

circuit class separations.
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Chapter 1

Introduction

1.1 Communication Complexity

Suppose we have a computational system comprising multiple processors, and the

system wishes to perform a computation when the input is distributed amongst the

processors. Our focus is on how efficiently the computation can be performed in par-

allel. That is, we are not interested in the amount of time each processor takes for its

own computations, but the amount of communication required between the proces-

sors. Such a problem and many of its variants appear in various areas of computer

science - network protocols, VLSI circuit design, data structures, communication

complexity and boolean circuit complexity.

In a seminal work, Andrew Yao [Yao79] introduced the area of communication

complexity, a subarea of theoretical computer science which deals with communication

as a resource rather than number of operations during computation as in the Turing

machine model. In the most basic model, two parties, say Alice and Bob, are given

inputs x ∈ X and y ∈ Y , respectively, for some domains X, Y . They wish to jointly

evaluate a given two-party function, defined by f : X × Y → {−1, 1}, on the input

(x, y). We assume that Alice and Bob have unbounded computational power, and

wish to minimize the number of bits communicated between them. This allows us to

view communication as the main resource, and ignore the computation time of each

individual party (processor). They communicate using a set of rules agreed upon

in advance. In other words, they follow a protocol for computing f . The notion of

correctness of this protocol may vary depending on our requirement. For instance,

one of the most natural notions of correctness of the protocol is that Alice and Bob

must output the correct answer on each input. The cost of the protocol is considered

to be the number of bits communicated on the worst-case input. It is easy to see that
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it is always feasible for Alice to send her whole input x to Bob, and Bob can output

the correct answer. The general question we address is whether or not there exist

protocols with a cheaper cost.

As in the Turing machine world, one may ask what happens if we allow access to

non-determinism, randomness etc. In the standard randomized model, Alice and Bob

have access to unlimited public random bits, and wish to compute the target function

f with probability at least 90% on all inputs. Are there functions hard to compute

in the former (deterministic) model, but which are easy in the randomized model?

A classic witness of a positive answer is the Equality function. Here, Alice and Bob

are given two n-bit strings, say x and y, and wish to test whether x = y. It is not

hard to show that in the deterministic model, any protocol for this function requires

n+ 1 bits. Surprisingly, there exists a cheap randomized protocol which requires just

5 bits of communication to get the right answer with probability at least 90% on all

inputs. We provide a sketch of this protocol in Section 1.4.

However, there exist functions which are hard to compute even in the randomized

model. Two classic instances of this are the Set Disjointness (DISJ) and Inner Prod-

uct Modulo 2 (IP) functions. Babai, Frankl and Simon [BFS86] defined analogues

of Turing machine classes in communication complexity. While a standard notion

of efficiency in the Turing machine world corresponds to computability in polyno-

mial time, Babai et al. argued that this notion of efficiency translates to that of

polylogarithmic communication (in the length of the inputs to Alice and Bob) in the

communication complexity world. Functions efficiently computable in the determinis-

tic communication model mentioned above form the communication complexity class

Pcc 1. Functions efficiently computable in randomized model mentioned above form

the class BPP. Thus, Equality separates P from BPP. Several other class separa-

tions are known in the communication complexity world, which are still open in the

Turing machine world, for instance P 6= NP. However, there are also several larger

classes against which explicit lower bounds remain unknown. For example, it is a

long-standing open question [BFS86] to prove strong lower bounds against the poly-

nomial hierarchy, for which IP has been identified as a natural target. Unfortunately

we do not have strong lower bounds against even the second level. Thus a natural

program is to understand these communication complexity classes better.

1Henceforth, we often drop the superscript cc since we exclusively deal with communication
complexity classes. We also abuse notation and let C(F ) denote the cost of the function F under
the model (class) C.
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Another reason for studying communication complexity is motivated by the fact

that several known circuit complexity lower bounds are proven by arguments that

show lower bounds on the communication complexity of the target function under

some partition of the inputs, for a suitable communication model. We elaborate on

this aspect in later chapters, and indeed, we prove several circuit complexity lower

bounds using communication lower bounds.

1.2 XOR Functions

The functions we use for our lower bounds and class separations are all ‘XOR’ func-

tions. This class of functions is one of interest since it captures many natural func-

tions, Equality for instance. As indicated in the previous section, the communication

complexity of Equality has been studied widely under various models. The communi-

cation complexity of XOR functions also has various connections to Fourier analysis,

additive combinatorics, approximation theory and boolean circuit complexity.

Towards formally defining XOR functions, we first introduce the notion of com-

posed functions. Given functions fn : {−1, 1}n → {−1, 1} and gm : {−1, 1}m →
{−1, 1},2 define the composed function fn ◦ gm : {−1, 1}nm → {−1, 1} as follows.

fn◦gm(x11, . . . , x1m, x21, . . . , x2m, . . . , xn1, . . . , xnm) = fn(gm(x1), gm(x2), . . . , gm(xn)).

We often drop the subscripts when the arities of the constituent functions are clear.

When g is a function on two bits, there are only two functions that it can be (up

to negation of variables): AND and XOR. The communication complexity of AND

functions has been widely studied [BFS86, KS92, BVdW07, She11a, She09b, She11b,

RS10, BT16, BCH+16]. The class of all functions of the form f ◦XOR yields the class

of XOR functions. The communication complexity of XOR functions has also received

considerable interest of late [MO09, ZS09, LLZ11, LZ13, Zha14, HHL18, KMSY18].

Given a function f : {−1, 1}n → {−1, 1}, a natural communication game for the

function f ◦ XOR is as follows. Alice gets input x1, . . . , xn, Bob gets input y1, . . . , yn,

and they wish to compute f ◦ XOR(x, y) (which is defined as f ◦ XOR(x, y) :=

f(x1 ⊕ y1, . . . , xn ⊕ yn)). The class of XOR functions is a natural one to consider

while aiming to prove lower bounds, since we may view the input as distributed be-

tween two parties, and neither party has any information about the output given

their own input. This motivates the program of studying the communication com-

plexity of XOR functions. Several communication complexity problems, for instance

2Throughout this thesis, we interchangeably view the input and output domains as {−1, 1}n and
{−1, 1}, and {0, 1}n and {0, 1} respectively. −1 is identified with ‘True’, and 1 with ‘False’.
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the fabled log-rank conjecture [LS88], are still open for the restricted class of XOR

functions. In this thesis, we prove lower bounds against XOR functions under various

randomized models of communication. Our results also yield some new boolean cir-

cuit class separations, communication complexity class separations, and resolve some

open questions in the area of analysis of boolean functions, all of which we elaborate

on in later sections.

1.3 Models of Communication

In this section, we describe some models of communication of our interest, along

with some examples. As mentioned in Section 1.1, Babai et al. [BFS86] argued

that Turing machine complexity classes have natural analogues in the communication

complexity world, where the notion of polynomial time as efficiency translates to that

of polylogarithmic communication in the length of inputs to Alice and Bob. They

also argued that the Turing machine class PP has two natural analogues: PPcc and

UPPcc. Recall that in the class BPP, the correctness requirement is that the protocol

should be correct with probability at least 1/2 + 2/5 (= 90%) on all inputs.

PP protocols are probabilistic with the requirement that the protocol be correct

with probability at least 1/2 + ε on all inputs for some ε > 0. However an additive

term of log(1/ε) is added to the number of bits communicated to yield the cost of

the protocol. For a two-party function F , if there exists an ε > 0 such that there are

polylogarithmic cost PP protocols computing F , then we say F ∈ PP. This is the

weakly unbounded-error model, and clearly BPP ⊆ PP. The function Set Disjointness

famously separates these two classes [BFS86, KS92, Raz92b].

In the UPP model,3 the correctness requirement is the same as that in the PP

model, but there is no additive log(1/ε) charged to the cost of the protocol.

Examples

Below, we provide some examples of XOR functions efficiently computable by proto-

cols in the BPP,PP and UPP models.

3In the UPP model, the random coins are assumed to be private. That is, Alice cannot view
the outcome of Bob’s random coin tosses and vice versa. Indeed, it is not hard to show that all
functions have UPP protocols of constant cost if allowed public randomness. Throughout this thesis,
we assume that we are dealing with private coin protocols whenever considering the UPP model,
and public coin protocols for the BPP and PP models.
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1. Recall the Equality function EQ : {0, 1}n × {0, 1}n → {0, 1}, defined by

EQ(x, y) = 1 if and only if x = y. Equality is an XOR function since it can

be expressed as NOR ◦ XOR. Consider the following protocol: Alice samples

(publicly) 4 random strings r1, r2, r3, r4 of length n each. She then sends Bob

(〈x, r1〉(mod 2), 〈x, r2〉(mod 2), 〈x, r3〉(mod 2), 〈x, r4〉(mod 2)). Bob computes

(〈y, r1〉(mod 2), 〈y, r2〉(mod 2), 〈y, r3〉(mod 2), 〈y, r4〉(mod 2)) and outputs 1 if

this agrees with Alice’s message.

If x = y, the protocol is always correct. If x 6= y, then Prr[〈x, r1〉(mod 2) =

〈y, r1〉(mod 2)] = 1/2 and hence Pr[〈x, ri〉(mod 2) = 〈y, ri〉(mod 2) for all i ∈
{1, 2, 3, 4}] < 10%. Thus, the above protocol describes a BPP protocol of cost

5.

2. Earlier in this section, we pointed out that DISJ (formally defined in Chap-

ter 2) famously separates BPP from PP. However, this separation can also

witnessed by an XOR function. Consider the Majority function, denoted MAJ :

{−1, 1}n → {−1, 1}, by MAJ(x1, . . . , xn) = −1 iff
∑n

i=1 xi < 0. The function

MAJ◦XOR was shown to be hard for BPP in [ZS09]. The following is an efficient

PP protocol for MAJ ◦ XOR. Alice and Bob sample (using public randomness)

an input i to the top Majority gate uniformly at random. They then output

xi⊕yi. This protocol has constant communication and its probability of success

is at least 1/2+1/2n for all inputs. Thus, MAJ◦XOR has efficient PP protocols.

3. A function f : {−1, 1}n → {−1, 1} is said to be a linear threshold function

if there exist integers w0, w1, . . . , wn such that f(x) = sgn(w0 +
∑n

i=1 wixi).

Denote the class of linear threshold functions by THR. Consider any function

in THR ◦ XOR, and the following private coin protocol for it. Alice samples an

input i to the top linear threshold gate with probability proportional to wi, and

sends this index to Bob along with xi. Bob outputs sgn(xi ⊕ yi). It is not hard

to show that this is a valid UPP protocol and its cost is polylogarithmic in n

(see Claim 2.3.10).

1.4 Weakly Unbounded-Error Communication

In this section, we describe our work on the PP complexity of XOR functions with

applications to BPP lower bounds and also to analysis of boolean functions.

The separation PP ( UPP was observed by Sherstov [She08], based on the work

of Goldmann, H̊astad and Razborov [GHR92]. This separation was independently

5



proven by Buhrman, Vereshchagin and de Wolf [BVdW07], who used a different

function and technique for the separation. Summarizing,

BPP ( PP ( UPP.

Sherstov [She11a] introduced the pattern matrix method, which led to several works

demonstrating PP lower bounds [Cha07, CA08, She09b], and subsequently UPP lower

bounds [RS10, She11b, BT16, BCH+16] of composed functions where the inner func-

tion is AND. On the other hand, we are not aware of any systematic method of

analyzing even the PP complexity of XOR functions before our work.

1.4.1 Our Work

PP Complexity

We prove a general theorem tightly characterizing the PP complexity of f ◦ XOR

in terms of how well f can be approximated by low weight polynomials. It is

known [Kla07] that the PP complexity of a function F is tightly related to a combi-

natorial measure, called the discrepancy, of F , denoted disc(F ) (see Definition 2.3.7).

Define the weight of a real polynomial to be the sum of the absolute values of its

coefficients. We introduce a notion called the polynomial margin of a boolean function

f , denoted m(f), which captures the error in the best uniform approximation of f by

polynomials of weight 1 (see Definition 2.4.8).

We show a tight relationship between the polynomial margin of f and the discrep-

ancy f ◦ XOR, thus giving a tight characterization of the PP complexity of f ◦ XOR

in terms of the polynomial margin of f .

For the purpose of this Chapter, we do not formally define polynomial margin or

discrepancy. The interested reader may refer to Chapter 3 for a formal statement.

We choose to state the follwing theorem here since it is a fundamental building block

for some of the following results (Theorems 1.4.2, 1.4.4, 1.4.7).

Theorem 1.4.1 (Polynomial Margin-Discrepancy theorem). Let f → {−1, 1}n →
{−1, 1}.

m(f) ≤ m(f ◦ XOR) ≤ 4disc(f ◦ XOR) ≤ 4m(f).

It is significantly easier to analyze approximation theoretic properties of f , rather

than analyzing the PP complexity of f ◦ XOR from first principles. As evidence of

this, we provide two applications of this theorem.
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The first application tightly characterizes PP(f◦XOR) when f is a symmetric func-

tion (its value only depends on the Hamming weight of the input). For a symmetric

function f : {−1, 1}n → {−1, 1}, define its spectrum or predicate Df : {0, 1, . . . , n} →
{−1, 1} by Df (i) = f(x) where x ∈ {−1, 1}n is any string such that |x| = i (here,

|x| denotes the number of −1’s in x). Note that the spectrum (predicate) of a sym-

metric function is well defined. Define the odd-even degree of a symmetric function

f , which we denote by degoe(f), to be |i ∈ {0, 1, . . . , n− 2} : Df (i) 6= Df (i+ 2)|. Shi

and Zhang [ZS09] conjectured that for symmetric f , the UPP complexity of f ◦ XOR

is essentially degoe(f).

We resolve a weak form of this conjecture by showing that when f is symmetric,

PP(f ◦ XOR) equals degoe(f) up to polylogarithmic factors (see Theorem 3.1.5).

Theorem 1.4.2. For symmetric f : {−1, 1}n → {−1, 1},

PP(f ◦ XOR) = Θ̃(degoe(f)).

Remark 1.4.3. The full conjecture was subsequently resolved independently by

Hatami and Qian [HQ17], and Ada, Fawzi and Kulkarni [AFK17]. However, their

proofs involve a reduction to symmetric AND functions, and use an involved result

of Sherstov [She11b] in a black-box fashion and does not provide new insight about

XOR functions. Moreover their proof techniques only apply for symmetric outer func-

tions. Our proof technique on the other hand, crucially uses the Margin-Discrepancy

equivalence, is from first principles and applies to non-symmetric outer functions as

well.

Our next application of the Margin-Discrepancy connection involves a non-

symmetric outer function. Recall that a function f is said to be a linear threshold

function if there exist integers w0, w1, . . . , wn such that f(x) = sgn(w0 +
∑n

i=1wixi).

It is well-known that there exists a linear threshold function on k = O(n2 log n)

variables, which we denote UTHRk, such that any linear threshold function on n bits

can be obtained by fixing inputs to UTHRk suitably.

We prove that an XOR function has exponentially small discrepancy, where the

outer function is a linear threshold function. It is not hard to show that such functions

have efficient UPP protocols (see Claim 2.3.10). Thus, this gives a new proof of the

separation between PP and UPP.

Theorem 1.4.4.
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1. There exists a linear threshold function f : {−1, 1}n → {−1, 1} such that

PP(f ◦ XOR) = Ω(n).

2. PP(UTHRn ◦ XOR) = Ω(
√
n).

Polynomial Measures of Symmetric Functions

The study of inapproximability of functions by low-degree polynomials is an active

area of research. Define the ε-approximate degree (if not parametrized, ε is assumed

to equal 1/3) of a boolean function f , denoted by degε(f) to be the minimum degree

of any polynomial p that approximates f uniformly to error ε (see Definition 2.4.3).

In a seminal work, Paturi [Pat92] characterized the approximate degree of symmet-

ric functions, building upon a celebrated result of Nisan and Szegedy [NS94], who

gave tight bounds on the approximate degree of OR. Paturi’s theorem has found

several applications in various areas of theoretical computer science (see, for exam-

ple, [Raz03, She09a, She11a, dW10, Spa08, BT15a]). Lower bounds on the sign degree

(see Definition 2.4.2) of functions has also been widely studied, starting from the sem-

inal work of Minsky and Papert [MP69]. A natural question that arises is whether

or not there are analogous results when the approximating polynomials may have

large degree, but have a small number of monomials or small weight. We prove such

analogous results for symmetric functions, as we elaborate on later in this section.

A useful tool we develop in the course of proving our PP lower bounds is a lifting

lemma (see Lemma 3.3.1), which allows us to analyze the polynomial margin of

‘lifted’ functions (see Equation 3.2). It is worthwile to note here that while standard

approximation theory deals with hardness of approximating functions by low degree

polynomials, the polynomials we are constrained to work with may have high degree

but low weight. Also, it is not clear apriori how to view a symmetric (linear threshold)

function as the lift of another symmetric (linear threshold) function.

Our lifting lemma, along with another technical tool (the projection lemma, see

Lemma 3.3.4), allows us to overcome this hurdle. The lifting lemma translates degree-

hardness properties of f to monomial-hardness properties of f op (which is a certain

lifted function obtained from f , formally defined in Equation 3.2). The proof of

this lemma is based on ideas from [KP97]. The lifting lemma used along with the

projection lemma has consequences in boolean analysis of symmetric functions as

well, which we outline below.
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The signed monomial complexity of a boolean function f , denoted by mon±(f), is

the minimum number of monomials required by any polynomial p to sign represent

f on all inputs.

We resolve a conjecture of Zhang [Zha92] by tightly characterizing the signed

monomial complexity of symmetric functions in terms of their odd-even degree.

Theorem 1.4.5 (Conjecture 1 in [Zha92]). For any symmetric f ,

mon±(f) = 2Ω̃(degoe(f)).

Ada, Fawzi and Hatami [AFH12] defined a measure of symmetric functions, de-

noted r(f), that captures the position closest to the middle of the spectrum where

there is a i-(i + 2) sign change (see Definition 2.4.11). Ada et al. showed that the

exact weight of any symmetric function f is tightly characterized by r(f). The main

conjecture they posed was whether or not f ’s approximate weight was also bounded

below by the same quantity. We resolve this conjecture in the affirmative.

Theorem 1.4.6 (Conjecture 1 in [AFH12]). For any symmetric f ,

log(wt1/3(f)) = Ω(r(F )).

As observed by Ada et al., the resolution of this conjecture in conjunction with

their main theorem yields several implications (cf. [AFH12]). One is the charac-

terizing the approximate monomial complexity of symmetric functions, which is a

natural analogue of Paturi’s celebrated result [Pat92], which characterized the ap-

proximate degree of symmetric functions. Another application is the resolution of

the log approximation-rank conjecture, which is the randomized analogue of the fa-

bled log-rank conjecture [LS88], for symmetric XOR functions.

BPP Complexity

Using linear programming duality and the generalized discrepancy method, we give

a simple alternate proof of the following result from [LS09b].

Theorem 1.4.7. For any boolean function f ,

BPP(f ◦ XOR) = Ω(log(wt1/3(f)).

Although Theorem 1.4.7 was known from [LS09b], to the best of our knowledge,

ours is the first work to use the inequality to prove lower bounds for explicit functions.
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Our lifting theorem in conjunction with Theorem 1.4.7 provides an alternate proof

of a result of Shi and Zhang [ZS09] that states that BPP(f ◦XOR) = Ω(r(f)) for any

symmetric f .

The general framework of the proofs of our results are summarized in Figure 3.1.

1.5 Unbounded-Error Communication

In this section, we outline our results on unbounded-error communication complexity

of XOR functions, with applications in boolean circuit complexity.

Sign Rank

Sign rank is a delicate but powerful notion, which has a matrix rigidity-like flavor.

The sign rank of a {−1, 1} valued matrix M is defined to be the minimum rank of a

real valued matrix each of whose entries agrees in sign with the corresponding entry

of M . Sign rank has found numerous applications in computer science in areas like

communication complexity, boolean circuit complexity, and computational learning

theory. Paturi and Simon [PS86] showed that the logarithm of the sign rank of

a (communication) matrix is essentially equivalent to the UPP complexity of the

underlying function.

Low-Depth Threshold Circuits

Understanding the computational power of constant-depth, unbounded fan-in thresh-

old circuits is one of the most fundamental open problems in theoretical computer

science. Despite several years of intensive research [HMP+93, HG91, GHR92, Raz92a,

KP97, KP98, For02, FKL+01, AM05, RS10, HP10, HP15, KW16, CSS16], we still do

not have strong lower bounds against depth-3 or depth-2 threshold circuits, depend-

ing on how we define threshold gates. The most natural definition of such a gate,

denoted by THRw, is one that computes a linear halfspace induced by the real weight

vector w = (w0, w1, . . . , wn) ∈ Rn+1. In other words, on an input x ∈ {−1, 1}n,

THRw

(
x
)

= sgn

(
w0 +

n∑
i=1

wixi

)
.

We denote by THR the class of all functions expressible as a linear threshold function.

Define the majority function MAJ : {−1, 1}n → {−1, 1} by MAJ(x) = sgn(
∑n

i=1 xi).
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For classes of functions C and D, denote by C ◦D the class of all functions computable

by polynomial-size depth-2 circuits where the top gate computes a function in C and

the bottom gates compute functions in D. Larger depth circuit classes are defined

in a similar fashion. The seminal work of Minsky and Papert [MP69] showed that a

simple function, Parity, is not in THR. While it is not hard to verify that Parity is in

THR ◦ THR (in fact in MAJ ◦MAJ), an outstanding problem is to exhibit an explicit

function that is not in THR ◦ THR. This problem is now a well-identified frontier for

research in circuit complexity. In particular, THR ◦THR is one of the smallest known

boolean circuit classes against which no strong lower bounds are known.

Goldmann, H̊astad and Razborov [GHR92] proved several intersting results, yield-

ing the following structure.

MAJ ◦MAJ = MAJ ◦ THR ( THR ◦MAJ ⊆ THR ◦ THR ⊆ MAJ ◦MAJ ◦MAJ.

It raises the following two questions: how powerful is the class THR ◦MAJ and how

does one prove lower bounds on the size of such circuits?

Lower bounds against MAJ ◦MAJ have been known since the work of Hajnal et

al. [HMP+93]. Forster et al. [FKL+01] observed that strong lower bounds on the sign

rank of the matrix corresponding to a convenient bi-partition of the input variables

of a function f is sufficient for proving lower bounds on the size of THR◦MAJ circuits

computing f . In a breakthrough work, Forster [For02] showed that IP has sign rank

2Ω(n) for the natural partition of input variables in which each part has n input

variables. This, therefore, yielded an exponential separation between THR◦MAJ and

MAJ◦MAJ◦MAJ. This meant that at least one of the two containments THR◦MAJ ⊆
THR ◦ THR and THR ◦ THR ⊆ MAJ ◦MAJ ◦MAJ is strict. However, the question of

which of these containments is strict is one towards which no progress was made until

now. In particular, Amano and Maruoka [AM05] and Hansen and Podolskii [HP10]

state that separating THR ◦ MAJ from THR ◦ THR would be an important step for

shedding more light on the structure of depth-2 boolean circuits. However, as far as

we know, there was no clear target function identified for the purpose of separating the

two classes. We remark here that it is not a priori clear that these classes ought to be

different, especially in light of Goldmann et al.’s result that MAJ◦MAJ = MAJ◦THR.

We, however, prove that THR ◦ MAJ ( THR ◦ THR, and elaborate on this in

Section 1.5.1.
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Communication Complexity Frontiers

A major goal, set by Babai et al. [BFS86], is to prove lower bounds against the

polynomial hierarchy, for which the simple function IP has long been identified as a

target. Unfortunately, it even remains open to exhibit a function that is not in the

second level of the hierarchy.

The strongest communication complexity class against which we know how to

prove explicit lower bounds is UPP (see Chapter 2 for formal definitions of communi-

cation complexity classes mentioned in this section). Razborov and Sherstov [RS10]

showed that PH (in fact, Π2P) contains functions outside UPP, rendering the sign

rank technique essentially useless to prove lower bounds against the second level. A

natural question is to understand until where, between the first and second level, does

the sign rank method suffice to prove lower bounds.

Indeed, there is a rich landscape of communication complexity classes below the

second level as discussed in a recent, almost exhaustive survey by Göös, Pitassi and

Watson [GPW18]. To motivate our contributions, we informally define MA protocols.

Merlin, an all powerful prover, has access to Alice and Bob’s inputs. He sends a

(purported) proof string to Alice and Bob, who then run a randomized protocol to

verify the proof. The protocol accepts an input if and only if the verification goes

through. We say the protocol computes a function F if for all inputs to Alice and

Bob, the probability of outputting the correct answer is at least 2/3. The cost of

the protocol on an input is the sum of the length of Merlin’s proof string and the

number of bits communicated between Alice and Bob. A function is said to be in

the complexity class MA if there is such a protocol computing it with polylogarithmic

worst-case cost (in the size of the input). For example, the function OR ◦ EQ can be

seen to be in MA as follows: Merlin sends Alice and Bob the index of an input to

the OR gate (if it exists) where EQ outputs −1, and Alice and Bob run an efficient

randomized protocol for EQ to verify this. The class MA is a natural generalization

of NP, and has received a lot of attention, starting with the work of [Kla03]. It is

known that MA is strictly contained in UPP.

One could similarly define AM, but its power remains much less understood; we

do not know any lower bounds against this class. A natural question to ask is for

which classes does the sign rank method suffice to prove lower bounds? Can we come

up with lower bound techniques for those classes for which the sign rank method fails

to prove lower bounds?
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We prove that PMA contains functions with large sign rank, strongly resolving an

open problem posed by Göös et al. [GPW18]. We define the class PMA and elaborate

on this result in Section 1.5.1.

1.5.1 Our Work

We consider the following easily describable function Fn: The input, of length n =

2m`, is split into two disjoint parts, X ∈ {−1, 1}m` and Y ∈ {−1, 1}m`. X and Y are

each further divided into ` disjoint blocks X1, . . . , X`, Y1, . . . , Y`, of length m each.

The function Fn outputs −1 iff the largest index i ∈ [`] for which Xi = Yi holds is an

odd index. For the purpose of this thesis, we set m = `1/3 +log `. We observe that Fn

can be easily described as a decision list (see Definition 4.1.1) of Equalities. Decision

lists are a natural class of functions to study and have widespread applications in

learning theory, for example [Riv87, KS06, Kra06].

Another way of looking at our function is to view it as a composed function in

the following way: consider a simple adaptation of the well-known ODD-MAX-BIT

function on ` bits, which we denote by OMB0
` . The function OMB0

` outputs −1

precisely if the rightmost bit that is set to 1 occurs at an odd index. It is simple to

observe that it is a linear threshold function:

OMB0
`

(
x
)

= −1 ⇐⇒
∑̀
i=1

(−1)i+12i (1 + xi) ≥ 0.5.

It is not hard to verify that Fn = OMB0
` ◦ OR`1/3+log ` ◦ XOR2.

We show a strong lower bound on the sign rank of MFn , where the rows of MFn

are indexed by the inputs X, the columns by Y , and the (x, y)th entry is Fn(x, y).

We overload notation and refer to the sign rank of MFn as the sign rank of Fn.

Theorem 1.5.1. The function Fn has sign rank 2Ω(n1/4).

The fact that such a simple function has large sign rank allows us to settle two

open problems, motivated earlier in this chapter. The first is a circuit complexity

class separation (in this case, it helps to view Fn as an XOR function). The second is

a communication complexity class separation (here it is more convenient to view Fn

as a decision list).

We first observe that Fn can be computed by linear sized THR ◦ THR formulas.

Next, we use the fact that sign rank lower bounds on f yield lower bounds on the

size of any THR ◦ MAJ circuit computing f . Combined with Theorem 1.5.1, these

observations yield the following separation.
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Theorem 1.5.2. The function Fn witnesses the following exponential separation.

THR ◦MAJ ( THR ◦ THR.

This resolves an open question in [AM05, HP10]. Along with Goldmann et al.’s

result that MAJ ◦ MAJ = MAJ ◦ THR, Theorem 1.5.2 may be summarized in one

sentence as follows: While weights at the bottom do not matter if the top is light,

they do matter if the top is heavy.

Göös [Göö17] pointed out to us that Fn can be used to demonstrate another com-

plexity class separation, this time in communication complexity. Göös et al. [GPW18]

conjectured that the (potentially incomparable) classes AM ∩ coAM and S2P (which

we do not define here) contain functions of large sign rank. In a very recent work,

Bouland et al. [BCH+16] showed that there is a partial function in AM∩ coAM which

has large sign rank, (partially) resolving the first conjecture.4 We provide a strong

confirmation of the second conjecture by exhibiting a total function in a sub-class of

S2P that has large sign rank.

In order to state our result, let us consider the complexity class PMA that is

contained in S2P. A function is in PMA if it can be computed by deterministic protocols

of polylogarithmic cost, where Alice and Bob have oracle access to any function in MA.

The function Fn under the natural input partition (recall that it can be expressed as a

decision list of equalities) can be efficiently solved by PMA protocols by an appropriate

binary search, and querying an OR ◦ EQ oracle at each step (see Protocol 1).

We thus prove the following as a consequence of Theorem 1.5.1.

Theorem 1.5.3. The function Fn witnesses the following communication complexity

class separation.

PMA * UPP.

Our result thus strongly confirms the second conjecture of Göös et al. by exhibiting

the first total function in a complexity class contained, plausibly strictly, in Π2P, that

has large sign rank.

On the other hand, it is known that PNP ( UPP and MA ( PP ( UPP. This

places the class PMA right on the frontier of our current knowledge of lower bounds

in communication complexity.

Proof idea: We now outline the proof of Theorem 1.5.1. We are guided by the

communication complexity theoretic interpretation of sign rank, due to Paturi and

4It still remains unknown if there are total functions in AM ∩ coAM that have large sign rank.
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Simon [PS86], who showed that the logarithm of the sign rank of a communication

matrix is essentially equal to the unbounded-error communication complexity (UPP)

of the underlying function. Figure 1.1 describes a general passage from the problem

of proving a lower bound on the sign rank of a function f ◦XOR to a sufficient problem

of proving an approximation theoretic hardness property of f : namely f has no good

‘mixed margin’ representation by low weight polynomials. The key difference between

our work and previous works [RS10, She11b, BT16, BCH+16] is in the nature of the

approximation theoretic problem that we end up with. While all these previous works

had to rule out good low degree representations, our program stipulates us to rule

out good low weight representations of otherwise unrestricted degree.

Our main technical contribution is an approximation theoretic result, which shows

that the function OMB0 ◦ OR is inapproximable by low weight polynomials of un-

restricted degree in a certain relaxed sense (see Section 4.4 for a description of our

notion of approximation). We prove this by a novel combination of ideas, sketched in

Figure 1.2, that differs entirely from the analysis in earlier works. One may view this

result as a hardness amplification result, albeit specific to the function OMB0. We

start with the function OMB0 which has no low weight ‘worst-case margin’ represen-

tation when the degree of the approximating polynomial is bounded [Bei94]. We show

that on composition with large fan-in OR gates, the function OMB0 ◦ OR becomes

‘mixed margin’-inapproximable by low weight polynomials, even with unrestricted de-

gree. We believe this result to be of independent interest in the area of analysis of

Boolean functions and approximation theory.

sr(f ◦ XOR) large

f correlates poorly
with all parities

under approximately
smooth distribution µ

Spectral properties
of XOR functions

Modified Forster’s theorem
[RS10]

f has no
low weight, good
‘mixed margin’
representation

LP duality

Figure 1.1: Approximation theoretic hardness of f implies large sign rank of f ◦XOR.

Symmetric XOR Functions

We also consider the UPP complexity f ◦ XOR when f is symmetric and periodic.

Refer to Definition 2.1.11 for a formal definition of MOD functions.
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Unrestricted degree, low weight
good approximation

over ⊕ basis, for g ◦ ∨

Unrestricted degree, low weight
good approximation
over ∨ basis, for gImplicit ideas in

[KP98]

Low degree, low weight
good approximation
over ∨ basis, for grest

Random restriction

OMB0 has a low degree, low weight
good approximation over ∨ basis

Contradiction!

Approximation theory

g = OMB0

Figure 1.2: Approximation theoretic analysis

We show the following.

Theorem 1.5.4. For any integer 3 ≤ m ≤ n1/2−ε,

UPP(MODA
m ◦ XOR) = Ω(n)

if MODA
m does not equal a constant or Parity or the complement of Parity.

Remark 1.5.5. Two very recent results of Hatami and Qian [HQ17] and Ada, Fawzi

and Kulkarni [AFK17] subsume Theorem 1.5.4. However, their results are based on

a simple reduction to symmetric AND functions, whose unbounded-error complexity

has been tightly characterized by Sherstov [She11b] using sophisticated tools from

approximation theory. Our result, on the other hand, is based on first principles using

Fourier analysis of boolean functions. Our result also shaves significant logarithmic

factors off that of [HQ17, AFK17].

Interestingly, we do not invoke linear programming duality in the proof of Theo-

rem 1.5.4, as opposed to our PP and BPP lower bounds stated in Section 1.4, or even

the UPP lower bound in Theorem 1.5.1.

Proof Idea: We first recall that Forster’s theorem along with a simple obser-

vation tells us that the sign rank of f ◦ XOR is bounded below by the inverse of

the maximum Fourier coefficient of f . Observe that MOD
{0}
3 has a large principal

Fourier coefficient even though the other coefficients are inverse exponentially small.

We prove a generalization of Forster’s theorem, allowing us to handle such cases and

prove strong lower bounds for MODA
m ◦XOR when m is odd. Finally, we use a shifting

and XORing trick to prove hardness of MODA
m ◦ XOR for all m = O(

√
n).
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1.6 Multi-Party Communication

Chandra, Furst and Lipton [CFL83] introduced the “number-on-forehead” (NOF)

model of multi-party communication, over thirty years ago, to obtain lower bounds

on the size of branching programs. In the NOF model, there are k players each

having an input that is metaphorically held on their foreheads. Every forehead is

visible to a player except her own.5 The two features that make this model more

subtle than its classical two-party counterpart, are the mutual overlap of information

and the fact that as k grows, each player misses less information. Indeed, starting with

the surprising work of Grolmusz [Gro94], several works (see for example [BGKL03,

ACFN15, CS14]) have shown that there are very counter-intuitive protocols especially

when k is larger than log n. This makes proving multi-party lower bounds on the cost

of protocols quite challenging. However, researchers have been well motivated to take

on this challenge due to many well-known applications of such lower bounds in diverse

areas like circuit complexity, proof complexity, and pseudo-random generators. More

recently new applications have emerged in areas like data structures [Pat10] and

distributed computing [DKO14].

The notion of communication complexity classes being analogous to Turing ma-

chine complexity classes also extends easily to the NOF model and gives rise to

complexity classes Pcck ,BPPcck ,NPcck ,PPcck etc. As mentioned in Section 1.1, many

separations in the communication world are known when k = 2. However, for

k ≥ 3, things become more delicate. For instance, Beame et al. [BDPW10] sep-

arated Pcc
k from BPPcc

k for k ≥ 3 not too long ago, but it is still outstanding to

find an explicit function witnessing this separation for even k = 3. A line of work

[LS09a, CA08, Cha09, She16b, She14, RY15] showed that Set-Disjointness also sepa-

rates BPPcc
k and PPcc

k for k ≤ δ · log n for some constant δ < 1.

Recall from Section 1.4 that the inclusion PPcc
2 ( UPPcc

2 was shown independently

(using different functions) by Buhrman, Vereshchagin and de Wolf [BVdW07] and

by Sherstov [She08], and reproved by us using different techniques in this thesis.

Sherstov [She08] observed that this separation was already implicit in the work of

Goldmann et al. [GHR92]. However the corresponding separation question for k ≥ 3

players remained unaddressed in the literature.

5The interested reader may note that this is the same model as used in the popular card game,
Hanabi.
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1.6.1 Our Work

We separate PPcc
k from UPPcc

k for k ≤ δ logN , for any constant δ < 1/4, using a simple

and natural extension of the GHR function, formally defined in Definition 5.1.1. This

function is an XOR function, where the outer function is a linear threshold function.

Theorem 1.6.1. The function GHRNk witnesses the separation

PPcc
k+1 ( UPPcc

k+1

for k ≤ δ logN for any constant 0 < δ < 1
4
.

After an initial manuscript of our work was published, Sherstov [She16c] noted

that a super-polynomial separation is also implicit by combining an earlier result of

his [She11a] and the works of [Bei94, Tha16]. These routes use tools from approxima-

tion theory. The best of these separations yields PPcc
k lower bounds of Ω

(
n2/11

)
which

is quantitatively weaker than the lower bound we obtain. Sherstov [She16c] also noted

that one can match our
√
n bounds by combining some explicit and implicit results

from previous works. Our argument, on the other hand, requires less background and

proceeds via first principles, and provides one of the best known separations through

an explicit function whose NOF complexity has not been analyzed before. This is

also an arguably simpler function which uses composition with XOR functions.

The structure of the GHRNk function and Theorem 1.6.1 also yield the following

boolean circuit class separations. Let ANYk denote the class of all boolean functions

that depend on only k of the input bits (this class is also popularly referred to as

k-juntas).

Corollary 1.6.2. There exists a constant c and a function f computable by linear

sized THR◦XORk circuits, but cannot be computed by polynomial sized MAJ◦THR◦
ANYk−1 circuits, for any k < c log n.

Corollary 1.6.3. There exists a constant c and a linear threshold function f such

that f cannot be computed by polynomial sized MAJ ◦ XOR ◦ ANYk circuits for any

k < c log n.

Proof idea of Theorem 1.6.1: We follow the ideas of Goldmann et al. [GHR92],

and show that it is sufficient to exhibit an upper bound on the discrepancy of a func-

tion related to the GHR function under a particular product distribution. Analyzing

the discrepancy of this related function on the obtained product distribution is still

non-trivial, and is the main technical contribution of this work. It involves proving
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independently interesting properties of integral solutions to a particular linear pro-

gram when the constraint matrix is a Hadamard matrix. The upper bound is easy to

prove.

1.7 Linear Decision Lists

A natural program that arises in view of Theorem 1.5.3 is to devise a strong lower

bound technique against the class PMA. Recall that Fn can be efficiently expressed as

a decision list of equalities. Equality is a special case of an exact threshold function.

Exact threshold functions f are those for which there exist reals w1, . . . , wn, w0 such

that f(x) = −1 iff
∑n

i=1 wixi = w0. It is not hard to observe that any decision list of

exact threshold functions can be computed efficiently using PMA protocols (a simple

modification of Protocol 1). Thus, a plausibly easier first step is to prove lower bounds

against the circuit class defined by polynomial sized decision lists of exact thresholds.

Towards this goal, we show a simple lower bound against decision lists, where

the queries are just linear threshold functions, rather than exact threshold functions.

We denote decision lists with queries to linear threshold functions by linear decision

lists (which we occasionally denote by LDL’s). Lower bounds against linear decision

lists and linear decision trees for IP were proved by [GT91, TV97]. Subsequently,

[UT11, UT15] observed lower bounds for functions with large UPP complexity, against

the classes of linear decision lists and linear decision trees when the weights of the

linear threshold queries are bounded by a polynomial in the input length, by noting

that functions computed in these classes can be efficiently computed by THR ◦MAJ

circuits.

LDL’s also have an intricate connection with threshold circuits, as they are easily

seen to be a subclass of THR ◦THR. Naturally, one might ask if they are as powerful

as THR ◦ THR, or if they are too weak to even compute all functions in MAJ ◦MAJ.

Turán and Vatan [TV97] asked the question of how linear decision lists compare to

MAJ ◦MAJ. The results of Buhrman et al. [BVdW07] and Sherstov [She11a] implied

that there is an LDL which cannot be efficiently computed by MAJ ◦MAJ circuits.

Our main theorem regarding linear decision lists is as follows, resolving the afore-

mentioned open question posed by Turán and Vatan.

Theorem 1.7.1. There exists a function that can be computed by polynomial sized

MAJ ◦ MAJ circuits, but any linear decision list computing it requires exponential

size.

19



In order to prove this, we first observe that the lower bound argument of [TV97]

shows that functions efficiently computable by linear decision lists (with no re-

strictions on the weights of the queried linear threshold functions) must have large

monochromatic rectangles.

Next, we show, using Harper’s theorem, that any monochromatic rectangle in the

communication matrix of MAJ ◦XOR must have size at most 20.82n. Theorem 1.7.1 is

now proven, since it is not hard to show that MAJ ◦ XOR can be computed by linear

sized MAJ ◦MAJ circuits.

1.8 Organization of Thesis

1. Chapter 2: We define various functions, communication complexity classes

and approximation-theoretic notions of interest. We also provide some basic

preliminaries that shall be used throughout this thesis.

2. Chapter 3: We describe how the weakly unbounded-error communication com-

plexity of XOR functions is tightly characterized by an approximation theoretic

quantity, the polynomial margin of the outer function. We also prove a lift-

ing theorem, translating degree-hardness properties of f to monomial-hardness

properties of a certain lifted version of f . We list several applications of these

results, some of which resolve open problems in the area of analysis of boolean

functions.

3. Chapter 4: We describe our results on the unbounded-error communication

complexity of XOR functions. We prove a lower bound on the sign rank of

an explicit function, proving a communication complexity class separation and

resolving a longstanding open problem in boolean circuit complexity. Finally,

we also show an unbounded-error lower bound for MODA
m◦XOR using a different

approach from our other unbounded error lower bound.

4. Chapter 5: We study a communication lower bound against an XOR func-

tion in the multi-party number-on-forehead model of communication, yielding

a multi-party communication complexity class separation and boolean circuit

class separations.

5. Chapter 6: We take a short excursion to study linear decision lists.

6. Chapter 7: We conclude with a summary of our contributions to this thesis,

a discussion on possible future directions, and list some open problems.
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Chapter 2

Definitions and Preliminaries

In this chapter, we define functions, communication complexity classes and

approximation-theoretic notions of interest to us in this thesis. The purpose of

this chapter is purely for ease of reference, and several definitions here are restated

elsewhere in this thesis. We also state some basic preliminaries of use throughout

this thesis.

2.1 Functions

Recall that we interchangeably view the input variables and/or outputs as {0, 1} and

{−1, 1} valued. In {−1, 1}, − 1 is to be interpreted as logical TRUE and 1 as logical

FALSE. We consider the {−1, 1} view unless mentioned otherwise. The Hamming

weight of a string x ∈ {−1, 1}, denoted |x|, is defined to be the number of −1’s in x.

In this section, we define some functions and classes of functions of interest to us in

this thesis.

Definition 2.1.1 (XOR). XOR : {−1, 1}k → {−1, 1} is defined as

XOR(x1, . . . , xk) = x1 ⊕ · · · ⊕ xk,

where

x⊕ y =

−1 if x 6= y

1 otherwise.

Definition 2.1.2 (Sign). Define the sign function, denoted sgn : R → {−1, 1}, by

sgn(x) = −1 iff x < 0.
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Definition 2.1.3 (Majority). Define the Majority function, denoted MAJ :

{−1, 1}n → {−1, 1}, by

MAJ(x1, . . . , xn) = sgn

(
k∑
i=1

xi

)
.

Definition 2.1.4 (Linear threshold functions). A function f : {−1, 1}n → {−1, 1}
is said to be a linear threshold function if there exist reals w0, w1, . . . , wn such that

f(x) = sgn(w0+
∑n

i=1wixi). Let THR denote the class of all linear threshold functions.

Definition 2.1.5 (Exact threshold functions). A function f : {−1, 1}n → {−1, 1}
is said to be an exact threshold function if there exist reals w0, w1, . . . , wn such that

f(x) = −1 iff
∑n

i=1 wixi = w0. Let ETHR denote the class of all exact threshold

functions.

Definition 2.1.6 (Decision lists). A decision list of length k, is a sequence D =

(L1, a1), (L2, a2), . . . , (Lk, ak), where each ai ∈ {−1, 1}, and Lk is the constant −1

function. The decision list computes a function f : {−1, 1}n → {−1, 1} as follows.

If L1(x) = −1, then f(x) = a1; elseif L2(x) = −1, then f(x) = a2, elseif . . . , elseif

Lk(x) = −1, then f(x) = ak. That is,

f(x) =
k∨
i=1

(
ai
∧

Li(x)
∧
j<i

¬Lj(x)

)
.

Definition 2.1.7 (OMB). Define the ODD-MAX-BIT function, denoted OMB :

{−1, 1}n → {−1, 1}, by

OMB(x) = −1 iff max{i ∈ [n] : xi = −1} is odd.

Definition 2.1.8 (OMB0). Define a simple variant of OMB function, which we denote

by OMB0 : {−1, 1}n → {−1, 1}, by

OMB0(x) = −1 iff max{i ∈ [n] : xi = 1} is odd.

For classes of functions C and D, denote by C ◦ D the class of all functions com-

putable by polynomial-size (in the input length) depth-2 circuits where the top gate

computes a function in C and the bottom gates compute functions in D. Larger depth

circuit classes are defined in a similar fashion.
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Definition 2.1.9 (Symmetric functions). A function f : {−1, 1}n → {−1, 1} is said

to be symmetric if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for all σ ∈ Sn where Sn denotes

the set of all permutations on n elements. In other words, a function is symmetric if

its value on an input only depends on the Hamming weight of the input. Let SYM

denote the class of all symmetric functions.

Definition 2.1.10 (Spectrum). We denote the spectrum (or predicate) of a symmet-

ric function f : {−1, 1}n → {−1, 1} by Df : {0, 1, . . . n} → {−1, 1} and define it as

follows.

Df (i) = −1 iff f(x) = −1 for |x| = i.

Note that the spectrum of a symmetric function is well-defined.

Definition 2.1.11 (MOD functions). A function f : {−1, 1}n → {−1, 1} is called a

MOD function if there exists a positive integer m < n and an ‘accepting’ set A ⊆ [m]

such that

f(x) =

−1 |x| ≡ k mod m for some k ∈ A

1 otherwise.

We write f = MODA
m.

We now introduce function composition. Given functions fn : {−1, 1}n →
{−1, 1} and gm : {−1, 1}m → {−1, 1}, define the composed function fn ◦ gm :

{−1, 1}mn → {−1, 1} as fn ◦ gm(x11, . . . , x1m, x21, . . . , x2m, . . . , xn1, . . . , xnm) =

fn(gm(x1), gm(x2), . . . , gm(xn)). We often drop the subscripts when the arities of the

constituent functions are clear.

Definition 2.1.12 (Equality). The Equality function, denoted EQ : {−1, 1}n ×
{−1, 1}n is defined by

EQ(x, y) =

−1 if xi = yi for all i ∈ [n]

1 otherwise.

Note that EQ = NOR ◦ XOR2.

Definition 2.1.13 (Greater Than). The Greater-Than function, denoted GT :

{−1, 1}n × {−1, 1}n is defined by

GT(x, y) =

−1 if n(x) > n(y)

1 otherwise
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where n(x) and n(y) are the integers corresponding to the binary representations x

and y, respectively.

Definition 2.1.14 (Set Disjointness). The Set-Disjointess function, denoted DISJ :

{−1, 1}n × {−1, 1}n → {−1, 1} is defined by

DISJ(x, y) =

−1 if (xi, yi) 6= (−1,−1) for all i ∈ [n]

1 otherwise.

Note that DISJ = NOR ◦ AND2.

Definition 2.1.15 (Inner Product Modulo 2). The Inner Product Modulo 2 function,

denoted IP : {−1, 1}n × {−1, 1}n → {−1, 1} is defined by

IP(x, y) = XOR((x1 ∧ y1), . . . , (xn ∧ yn)).

Note that IP = XOR ◦ AND2.

2.2 Fourier Analysis

Consider the vector space of functions from {−1, 1}n to R, equipped with the following

inner product.

〈f, g〉 = Ex∈{−1,1}nf(x)g(x) =
1

2n

∑
x∈{−1,1}n

f(x)g(x).

Define characters χS for every S ⊆ [n] by χS(x) =
∏

i∈S xi. The set {χS : S ⊆ [n]}
forms an orthonormal basis for this vector space. Thus, every f : {−1, 1}n → R can

be uniquely written as f =
∑
S⊆[n]

f̂(S)χS where

f̂(S) = 〈f, χS〉 = Ex∈{−1,1}nf(x)χS(x). (2.1)

Lemma 2.2.1 (Folklore). For any function f : {−1, 1}n → R,

Ex∈{−1,1}n [|f(x)|] ≥ max
S⊆[n]

∣∣∣f̂(S)
∣∣∣.

24



Fact 2.2.2 (Plancherel’s identity). For any functions f, g : {−1, 1}n → R,

Ex∈{−1,1}n [f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S).

Lemma 2.2.3 (Folklore). Let f : {−1, 1}n → R be any real valued function and let

M denote the communication matrix of f ◦ XOR. Then, the eigenvalues of M are

{2nf̂(S) : S ⊆ [n]}. Thus,

||M || = 2n ·max
S⊆[n]

∣∣∣f̂(S)
∣∣∣.

Although this is fairly well known, we supply a proof below for completeness.

Proof. Let M denote the communcation matrix of f ◦XOR. That is, Mx,y = f(x⊕y).

Corresponding to each T ⊆ [n], consider the vector χT ∈ {−1, 1}2n (which is defined

by (χT )y = χT (y)).

Note that

Mx,y =
∑
S⊆[n]

f̂(S)χS(x⊕ y) =
∑
S⊆[n]

f̂(S)χS(x)χS(y).

Fix any T ⊆ [n]. We now show χT is an eigenvector of M with eigenvalue 2nf̂(T ).

Consider the xth coordinate of MχT .

(MχT )x =
∑

y∈{−1,1}n

∑
S⊆[n]

f̂(S)χS(x)χS(y)χT (y)

=
∑
S

f̂(S)χS(x)
∑

y∈{−1,1}n
χS4T (y)

= f̂(T )χT (x)2n.

Hence the eigenvalues of M are precisely {2nf̂(S) : S ⊆ [n]}. Now, the singular

values ofM are just the square root of the eigenvalues ofMTM , which are the absolute

values of the eigenvalues of M since M is symmetric. The lemma now follows.

2.3 Communication Complexity

In this section, we first define the general framework of communication complexity,

and then define communication models of interest to us in this thesis.
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In the general problem of two-party communication complexity [Yao79], two par-

ties, say Alice and Bob, are individually given X ∈ X and Y ∈ Y for some finite

input sets X ,Y ,1 and wish to compute a given function f : X × Y → {−1, 1} with

as little communication between them as possible. They communicate according to

a protocol which has been fixed in advance. The cost of a protocol is the maximum

number of bits communicated on the worst case input. A formal introduction to Yao’s

model of communication complexity can be found in [KN97], for example.

Access to oracles, non-determinization and randomization are restricted by the

model of communication under consideration. In the randomized models of our inter-

est, Alice and Bob have access to public randomness (except for the UPP model where

they only have access to private randomness). A probabilistic protocol Π computes

f with advantage ε if the probability that f and Π agree is at least 1/2 + ε for all

inputs. Denote the cost of the best such protocol to be Rε(f). Note that we deviate

from the notation used in [KN97], for example.

For a communication model C and a function f : {−1, 1}n × {−1, 1}n → {−1, 1},
we denote by C(f) the minimum (or infimum) ‘cost’ of a ‘correct’ protocol for f .

2.3.1 Models of Communication

Below, we define some models of communication of interest to us in this thesis along

with the definitions of their cost and correctness. In the following definitions, we

denote inputs by (x, y), protocols by Π and functions by f .

Definition 2.3.1 (P).

• Syntax: In a P protocol, a player’s message can depend only upon previous

messages and the player’s input.

• Correctness: Π(x, y) = f(x, y) for all (x, y).

• Cost: Maximum number of bits communicated on the worst-case input.

Definition 2.3.2 (NP).

• Syntax: In an NP protocol, the players are given access to a ‘certificate’ c. A

player’s message can depend upon the certificate, previous messages, and the

player’s input.

1Unless mentioned otherwise, we use X = Y = {−1, 1}n.
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• Correctness: If f(x, y) = 1, then there exists a cx,y such that Π(x, y, cx,y) = 1.

If f(x, y) = 0, then for all c, Π(x, y, c) = 0.

• Cost: maxx,y mincx,y (|cx,y|+ number of bits communicated).

Randomized Models

In randomized models, both parties have access to unlimited random strings, which

we denote by r. Recall that in all models except UPP, the randomness is public,

whereas the randomness in private to each party in the UPP model.

Definition 2.3.3 (BPP).

• Syntax: Same as P, but players have additional access to unlimited public

random bits, upon which the messages can depend.

• Correctness: Prr[Π(x, y, r) = f(x, y)] > 1/2 + 2/5 for all (x, y).

• Cost (R2/5(f)): Maximum number of bits communicated on the worst-case

input.

Definition 2.3.4 (MA).

• Syntax: Same as NP, but players have additional access to unlimited random

bits, upon which the messages can depend.

• Correctness: If f(x, y) = 1, then there exists cx,y such that Prr[Π(x, y, cx,y) =

1] > 1/2 + 2/5. If f(x, y) = 0, then for all c,Prr[Π(x, y, c) = 0] > 1/2 + 2/5.

• Cost: maxx,y mincx,y (|cx,y|+ number of bits communicated).

Definition 2.3.5 (PP).

• Syntax: Same as BPP.

• Correctness: Prr[Π(x, y, r) = f(x, y)] > 1/2+ε(n) for all (x, y), for some ε(n) >

0.

• Cost: infε(n)>0

(
Rε(n)(f) + log

(
1
ε(n)

))
.

Definition 2.3.6 (UPP).

• Syntax: Same as PP.2

2Recall that the randomness is private in the UPP model.
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• Correctness: Prr[Π(x, y, r) = f(x, y)] > 1/2+ε(n) for all (x, y), for some ε(n) >

0.

• Cost: infε(n)>0

(
Rε(n)(f)

)
.

Models with Access to Oracles

For classes C and D, define the model CD to have:

• Syntax: Same as C, with the following additional property. At each step of the

protocol, Alice and Bob either send a message, or they ‘invoke an oracle’ to

compute a function g(x′, y′) where x′ and y′ are strings computed by Alice and

Bob from the history of the protocol until that point.

• Correctness: Same as in C.

• Cost: Maximum number of bits communicated + the D-cost of all the functions

queried during the protocol.

We also denote by C, or occassionally Ccc, the class of all functions which admit

protocols of cost (in the model C) polylogarithmic in n.

2.3.2 Preliminaries

Definition 2.3.7 (Discrepancy). For a function F : {−1, 1}n × {−1, 1}n → {−1, 1},
define the discrepancy of a rectangle S × T under a distribution λ on {−1, 1}n ×
{−1, 1}n as follows.

discλ(S × T, F ) =

∣∣∣∣∣∣
∑

(x,y)∈S×T

F (x, y)λ(x, y)

∣∣∣∣∣∣.
The discrepancy of F under a distribution λ is defined as

discλ(F ) = max
S⊆{−1,1}n,T⊆{−1,1}n

discλ(S × T, F )

and the discrepancy of F is defined to be

disc(F ) = min
λ

discλ(F ).

Klauck [Kla07] proved that discrepancy and PP complexity are equivalent notions.
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Theorem 2.3.8 (Klauck [Kla07]). For any function f : {−1, 1}n → {−1, 1},

PP(f) = Θ

(
log

(
1

disc(f)

))
.

Define the sign rank of a real valued matrix A = [Aij], denoted by sr(A) to be

the least rank of a real matrix B = [Bij] such that AijBij > 0 for all (i, j) such that

Aij 6= 0. For the purpose of this thesis, we abuse notation, and use sr(F ) and sr(MF )

interchangeably, to denote the sign rank of MF where MF denotes the communication

matrix of the function F .

Paturi and Simon [PS86] showed an equivalence between UPP(F ) and the sign

rank of MF .

Theorem 2.3.9 (Paturi and Simon [PS86]). For any function F : {−1, 1}n ×
{−1, 1}n → {−1, 1},

UPP(F ) = log sr(MF )±O(1).

We now show a basic upper bound that is of use to us throughout this thesis.

Claim 2.3.10. For any linear threshold function f : {−1, 1}n → {−1, 1}, UPP(f ◦
XOR) = O(log n).

Proof. Since f is a linear threshold function, it can be expressed as f(z) = sgn(w0 +∑n
i=1 wizi). Without loss of generality, assume that w0 +

∑n
i=1wizi never takes the

value 0 (else one can tweak the weights suitably). Denote w =
∑n

i=0 |wi|.
We demonstrate a communication protocol for f ◦ XOR, and then analyze its

correctness in the UPP model. Alice samples an input gate to the top linear threshold

function with probability proportional to its weight. That is, Alice samples the ith

gate of the linear threshold with probability |wi|/w. She then sends Bob the value

sgn(wi)×xi along with the index i (the index needs to be sent since we are assuming

that the randomness is private). This takes log n + 1 bits of communication. Bob

outputs sgn(wi)× xi × yi.
In order to analyze the success probability of this protocol, let us assume that

f(x⊕y) = 1 (the analysis of the case when f(x⊕y) = −1 is analogous). Observe that

the probability of success equals the probability of sampling an input to the threshold

that satisfies wixiyi > 0. This probability equals
∑
w+
i /w, where the w+

i ’s are the

weights of the inputs to the threshold for which wixiyi > 0. Since
∑
w+
i >

∑
w−i

(the weights of the inputs where wixiyi < 0), the probability of success is strictly

greater than 1/2.
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Remark 2.3.11. A more general form of the claim above can be stated as follows.

If a function g has deterministic communication complexity c, then for any linear

threshold function fn, one has

UPP(fn ◦ g) = c+O(log n).

Another simple, yet powerful lemma regarding unbounded-error communication

is as follows.

Lemma 2.3.12 (Folklore). For any functions F,G : {−1, 1}n × {−1, 1}n → {−1, 1},

UPP(F ⊕G) ≤ UPP(F ) + UPP(G).

Proof. Let Π1,Π2 be unbounded-error protocols for F and G, respectively. Consider

the protocol Π = Π1⊕Π2, that is Alice and Bob run both Π1 and Π2 and output the

XOR of the two outputs. It remains to verify the correctness of this protocol.

Say Π1 computed F with success probability 1/2 + ε and Π2 computed G with

success probability 1/2 + δ. Since Π agrees with F ⊕G precisely when either Π1,Π2

both succeed or both fail, the probability of Π agreeing with F ⊕G is at least (1/2 +

ε)(1/2 + δ) + (1/2 − ε)(1/2 − δ). Thus, the success probability of Π is at least

1/2 + 2εδ > 1/2.

2.4 Approximation Theory

In this section, we list some approximation-theoretic notions and some measures of

functions of interest to us in this thesis.

Definition 2.4.1 (Degree). The degree of a function f : {−1, 1}n → {−1, 1}, denoted

deg(f), is the maximum degree of a monomial in the unique multilinear polynomial

representing f .

Definition 2.4.2 (Sign degree). The sign degree of a function f : {−1, 1}n →
{−1, 1}, denoted deg±(f), is the minimum degree of a polynomial p satisfying

p(x)f(x) > 0 for all x ∈ {−1, 1}n.

Definition 2.4.3 (Approximate degree). The approximate degree of a function f :

{−1, 1}n → {−1, 1}, denoted d̃eg(f) or deg1/3(f), is the minimum degree of a poly-

nomial p satisfying |p(x)− f(x)| < 1/3 for all x ∈ {−1, 1}n.
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Definition 2.4.4 (Sparsity). The sparsity of a function f : {−1, 1}n → {−1, 1},
denoted mon(f), is the number of monomials with non-zero coefficients in the unique

multilinear polynomial representing f .

Definition 2.4.5 (Signed monomial complexity). The signed monomial complexity

of a function f : {−1, 1}n → {−1, 1}, denoted mon±(f), is the minimum sparsity of

a polynomial p satisfying p(x)f(x) > 0 for all x ∈ {−1, 1}n.

Definition 2.4.6 (Approximate monomial complexity). The approximate monomial

complexity of a function f : {−1, 1}n → {−1, 1}, denoted mon1/3(f), is the minimum

sparsity of a polynomial p satisfying |p(x)− f(x)| < 1/3 for all x ∈ {−1, 1}n.

Definition 2.4.7 (Weight). The weight of a function f : {−1, 1}n → {−1, 1}, de-

noted wt(f), is the sum of absolute values of the coefficients of the unique multilinear

polynomial representing f .3 The weight of a real polynomial is defined analogously.

Definition 2.4.8 (Polynomial margin). The polynomial margin of a function f :

{−1, 1}n → {−1, 1}, denoted m(f), is the error in the best uniform approximation of

f by a weight 1 polynomial. More precisely,

m(f) = max
p:wt(p)=1

min
x∈{−1,1}n

p(x)f(x).

Definition 2.4.9 (Approximate weight). The approximate weight of a function f :

{−1, 1}n → {−1, 1}, denoted wt1/3(f), is the minimum weight of a polynomial p

satisfying |p(x)− f(x)| < 1/3 for all x ∈ {−1, 1}n.4

2.4.1 Measures of Symmetric Functions

In this section, we define some measures of symmetric functions of interest.

It is well-known that the sign degree of symmetric functions equals the number of

sign changes in the underlying predicate. Formally,

Fact 2.4.10 (Folklore). For any symmetric function f : {−1, 1}n → {−1, 1},

deg±(f) = |{i ∈ {0, 1, . . . , n− 1} : Df (i) 6= Df (i+ 1)}|.
3Note that this notion coincides with ||f̂ ||1, the spectral norm of f . However, for convenience,

we shall use the former notation.
4This notion coincides with the notion of the ε-approximate spectral norm of f , denoted by ||f̂ ||1,ε,

as defined in [AFH12].

31



Definition 2.4.11. Let F : {−1, 1}n → {−1, 1} be a symmetric function. Define

r0 = r0(F ), r1 = r1(F ) to be the minimum integers r′0 and r′1 respectively, such that

r′0, r
′
1 ≤ n/2 and DF (i) = DF (i + 2) for all i ∈ [r′0, n − r′1). Define r = r(F ) =

max{r0, r1}.

Definition 2.4.12 (Odd-even degree). The odd-even degree of a symmetric function

f : {−1, 1}n → {−1, 1} is defined as follows.

degoe(f) = |i ∈ {0, 1, . . . , n− 2} : Df (i) 6= Df (i+ 2)|.
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Chapter 3

Weakly Unbounded-Error

Communication

3.1 Introduction

In this chapter, we describe our results regarding the weakly unbounded-error (PP)

and bounded-error (BPP) models of communication.

As mentioned in Section 1.4, BPP ( PP ( UPP. There are fewer known strong

lower bounds for the PP model than the BPP model. This is partly explained by the

fact that while techniques based on corruption and information theory yield lower

bounds for the bounded-error model, the PP model is exactly characterized by the

stronger measure of discrepancy [Kla07]. Luckily, the situation is not entirely bleak

with respect to the PP model; several lower bounds are known in this setting. For

instance, it is not hard to show that IP has Ω(n) PP cost. Proving lower bounds for

the unbounded-error model, on the other hand, is even more difficult. We elaborate

on this in Chapter 4.

An important step towards understanding the randomized communication com-

plexity of block-composed functions was taken in the works of Sherstov [She09b,

She11a] and Shi and Zhu [SZ09]. These papers considered the communication com-

plexity of f ◦ g, where g has suitably nice properties, which XOR does not pos-

sess. They reduced the task of proving lower bounds on the cost of both (quantum)

bounded-error and weakly unbounded-error protocols for such functions to that of

analyzing the approximability of f by low degree real polynomials. This passage was

achieved by making very elegant use of linear programming duality. This method

spawned further progress in proving lower bounds against AND functions. One area
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of progress was the adaptation of the technique to multi-party communication com-

plexity in [Cha07, CA08, LS09a, Cha09], resulting in the first polynomial lower bounds

for DISJ in the hard NOF model.1 Using even more powerful approximation theo-

retic tools for polynomials, Sherstov [She14] significantly improved these bounds. In

another direction, the power of these approximation-theoretic techniques were fur-

ther demonstrated by [RS10, She11b, BT16, BCH+16], where unbounded-error lower

bounds were shown against functions of the form f ◦ AND for specific f . In short,

approximation-theoretic techniques provide a systematic way of analyzing the com-

munication complexity of AND functions. Besides these impressive developments,

this approach relates to research on approximation theory, that are of independent

interest (see for example [BT17, Tha16]).

There are essentially two inner functions of block length 1, AND and XOR. A nat-

ural example of an XOR function is AND ◦XOR, better known as Equality. However,

even its bounded-error complexity is just O(1). In fact, in some contexts as dis-

cussed later in this chapter, proving even PP lower bounds for XOR functions seems

more challenging than proving lower bounds for AND functions. Interestingly, Sher-

stov [She08] used an XOR function introduced by Goldmann, H̊astad and Razborov

[GHR92], to separate PP from UPP. Zhang and Shi [ZS09] characterized the bounded-

error and quantum complexity of all symmetric XOR functions. Recently, Hatami,

Hosseini and Lovett [HHL18] nearly characterized the deterministic complexity of all

XOR functions. Even more recently, after an initial version of a manuscript of ours

containing weaker results was submitted, Hatami and Qian [HQ17] and Ada, Fawzi

and Kulkarni [AFK17] independently reported settling a conjecture of Zhang and Shi

[ZS09] on the unbounded-error complexity of symmetric XOR functions. Both papers

analyze XOR functions by finding simple reductions to appropriate AND functions.

While such arguments are short, as commented by Ada et al. [AFH12], it seems they

do not provide new insights and techniques that can be applied more broadly to XOR

functions.

In this chapter, we develop an approximation-theoretic technique for analyzing

XOR functions with several applications. Along the way, we discover an independently

interesting general connection between the discrepancy of functions of the form f ◦
XOR and the polynomial margin complexity of f . Using this and other tools, we

characterize the PP complexity of symmetric XOR functions and provide a new proof

of the exponential separation between PP and UPP via an XOR function. We further

1We also prove some lower bounds in multi-party communication complexity in Chapter 5 in this
thesis. However, we do not make use of linear programming duality.
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provide a new proof of the characterization of Zhang and Shi [ZS09] of the bounded-

error complexity of symmetric XOR functions. Our argument, unlike theirs, is based

on a connection between the approximate spectral norm of f and the bounded-error

communication complexity of f ◦ XOR. While this connection seems to have been

first reported in the survey by Lee and Shraibman [LS09b], as far we know, and as

expressed in Ada et al. [AFH12], ours is the first work to use it to derive explicit BPP

lower bounds.

In the course of proving lower bounds on communication complexity, we obtain

new results on two complexity measures of symmetric functions that are of inde-

pendent interest. First, we characterize symmetric functions computable by quasi-

polynomial size depth-2 boolean circuits of the form Threshold of Parity, resolving an

old conjecture of Zhang [Zha92]. Further, we characterize the approximate spectral

norm of symmetric functions, confirming the main conjecture of Ada et al. [AFH12],

which has several consequences (cf. [AFH12]). We feel that these developments ex-

hibit the potential of our approximation-theoretic technique for proving lower bounds

against general XOR functions.

3.1.1 Our Results

In this section, we first outline our (non-communication complexity) results regarding

analysis of symmetric boolean functions. These resolve open questions posed by Ada

et al. [AFH12] and Zhang [Zha92], and are an independently interesting aspect of

our work. Later, we list our results regarding the PP and BPP complexity of XOR

functions.

Polynomial Complexity Measures of Symmetric Functions

We first outline results we obtain by amplifying hardness of functions using the

method of lifting functions as defined in Krause and Pudlák. Next, we list appli-

cations of this ‘hardness amplification’ to symmetric functions.

In a seminal work, Paturi [Pat92] characterized the approximate degree of sym-

metric functions, building upon a celebrated result of Nisan and Szegedy [NS94].

Paturi’s theorem has found various applications and spawned several lines of re-

search [Raz03, She09a, She11a, dW10, Spa08, BT15a]. The sign degree of symmetric

functions is well-known to be characterized by the number of sign changes in the un-

derlying predicate. A natural analogous question that arises is whether or not there

are similar results on the hardness of approximation of symmetric functions by low
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monomial/weight polynomials, which might have unrestricted degree. To the best of

our knowledge, such characterizations were unkown until our work.

We prove the following theorem which gives us lower bound tools against ap-

proximate weight, signed monomial complexity, and polynomial margin of symmetric

functions.

Theorem 3.1.1. There exists a universal constant c > 0 such that for any symmetric

F : {−1, 1}n → {−1, 1}n, the following hold.

1. r(F ) ≥ 5 =⇒ log(wt1/3(F )) ≥ c · r(F ).

2. k = degoe(F ) ≥ 16 =⇒ mon±(F ) ≥ 2c·k/ log(n/k).

3. k = degoe(F ) ≥ 16 =⇒ m(F ) ≤ 1
2c·k/ log(n/k) .

We also use Part 1 of Theorem 3.1.1, to prove the following theorem, posed as a

conjecture by Ada et al. [AFH12].

Theorem 3.1.2 (Conjecture 1 in [AFH12]). There exist universal constants c0, c1 > 0

such that for any symmetric function F : {−1, 1}n → {−1, 1},

c0 · r(F ) log

(
n

r(F )

)
≥ log wt(F ) ≥ log wt1/3(F ) ≥ c1 · r(F ).

One can view Theorem 3.1.2 as a weight-hardness analogue of Paturi’s theorem. It

has several other consequences, which we do not elaborate on. The interested reader

may refer to Section 4 in [AFH12] for details.

We also resolve the following conjecture by Zhang [Zha92].

Theorem 3.1.3 (Conjecture 1 in [Zha92]). A symmetric function f : {−1, 1}n →
{−1, 1} is computable by a quasi-polynomial size Threshold of Parity circuit if and

only if its odd-even degree is logO(1) n.

PP Complexity

In this section, we list our results regarding the PP complexity of XOR functions.

Recall from Theorem 2.3.8 that PP(F ) is equivalent (up to constants) to

log(1/disc(F )) for any boolean function F . Thus, it suffices to prove strong upper

bounds on discrepancy in order to prove strong PP lower bounds. Our main tool for

analyzing the discrepancy of XOR functions is a tight relationship (upto constant

factors) between disc(f ◦ XOR) and m(f). We derive this using linear programming

duality.
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Theorem 3.1.4 (Polynomial Margin-Discrepancy theorem). Let f → {−1, 1}n →
{−1, 1}.

m(f) ≤ m(f ◦ XOR) ≤ 4disc(f ◦ XOR) ≤ 4m(f).

The proof of Theorem 3.1.4 shows that the discrepancy of every XOR function

is attained on a lifted distribution. Indeed, our Margin-Discrepancy Theorem is a

lifting theorem for XOR functions that primarily reduces the task of proving a lower

bound on the discrepancy of f ◦XOR to that of establishing bounds on the polynomial

margin of f . The second task is likely easier using tools from approximation theory.

There is a compelling parallel here with the Degree-Discrepancy Theorem of Sherstov

[She09b]. That theorem has yielded a methodical way of proving discrepancy bounds

for f ◦ PM by showing a lower bound on the sign degree of f , where PM denotes

the pattern matrix gadget, and is defined formally in Section 3.2. This has led to

much progress in understanding the communication complexity of AND functions

(for example, [Cha07, CA08, She11a, She11b]). We believe our polynomial Margin-

Discrepancy Theorem will yield a unified approach in making similar progress for

XOR functions. As evidence of this, we provide two applications of this theorem.

Zhang and Shi [ZS09] conjectured that for any symmetric f, UPP(f ◦ XOR) is

essentially the odd-even degree of f . Our first application of the Margin-Discrepancy

Theorem shows that the PP complexity of functions of the form f ◦XOR for symmetric

f is essentially the odd-even degree of f (upto polylogarithmic factors) as predicted

by the conjecture of Zhang and Shi [ZS09].

Theorem 3.1.5. There exists universal constants c1, c2 > 0 such that for any sym-

metric f : {−1, 1}4n → {−1, 1} with r ≥ 4 denoting its odd-even degree,

c1r log n ≤ PP(f ◦ XOR) ≥ c2r/ log(n/r).

In Section 4.8, we describe our further progress towards the full Zhang-Shi con-

jecture, proving it for the case when f is symmetric and its spectrum is periodic.

The full conjecture was subsequently resolved independently by Ada et al. [AFK17]

and Hatami and Qian [HQ17], who used completely different techniques from ours.

Their approaches, among other things, make use of the characterization of the UPP

complexity of symmetric AND functions by Sherstov [She11b]. Our approaches, on

the other hand develop tools of independent interest that contribute to the theory of

XOR functions.

To prove the Theorem 3.1.5, Theorem 3.1.4 sets the goal of establishing a bound

on the margin complexity of symmetric functions with large odd-even degree. We do
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this by showing that symmetric functions with large odd-even degree can be projected

onto a certain lift of symmetric functions with high sign degree. This enables us to

work with the more convenient notion of sign degree rather than odd-even degree of

symmetric functions.

As another application of our Margin-Discrepancy connection, we provide a new

proof of the separation of PP from UPP. We do this by proving that an XOR func-

tion, almost identical to the GHR function (cf. [GHR92]) has exponentially small

discrepancy. It is well-known that this function has very efficient UPP protocols (see

Claim 2.3.10). We define the GHR function formally in Section 3.2.

Theorem 3.1.6.

1. There exists an absolute constant c > 0 and a linear threshold function f :

{−1, 1}n → {−1, 1} such that PP(f ◦ XOR) ≥ cn.

2. PP(GHR) ≥ Ω(
√
n).

BPP Complexity

Using linear programming duality and the generalized discrepancy method (Theo-

rem 3.2.13), we give a simple alternate proof of the following result due to Lee and

Shraibman [LS09b].

Theorem 3.1.7. For any function f : {−1, 1}n → {−1, 1},

BPP(f ◦ XOR) ≥ log wt1/3(f)− 4.

Remark 3.1.8. In fact, Lee and Shraibman proved that lower bounds on wt1/3(f)

also yield lower bounds on the bounded-error quantum communication complexity of

f ◦ XOR. Our proof also implies this.

Using Part 1 of Theorem 3.1.1 in conjunction with Theorem 3.1.7 provides an

alternate proof of the following result of Zhang and Shi [ZS09].

Theorem 3.1.9 ([ZS09]). Let F : {−1, 1}n → {−1, 1} be any symmetric function.

Then, BPP(F ◦ XOR) = Ω(r(F )).

Remark 3.1.10. Blais et al. [BBG14] also provided an alternate proof to Theorem

3.1.9 by showing a lower bound on the information complexity of symmetric XOR

functions (it is known however that information complexity lower bounds need not

imply quantum lower bounds [KLL+15]).
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3.1.2 Proof Outline

Our proof strategy is depicted in Figure 3.1. First, we use an idea due to Krause and

Pudlák [KP97], who showed that if a function f has high sign degree, then a certain

lift of that function, denoted by f op has high sign monomial complexity. We observe

that their argument can be adapted to show a more general result. In particular, our

Lemma 3.3.1 shows that the hardness of f for low degree polynomials, with respect to

natural notions like uniform approximation and sign representation, gets amplified to

corresponding hardness of f op for sparse (low weight) polynomials. Next, we observe

that LP duality implies, via Theorems 3.1.4 and 3.1.7, that such hardness of a function

F against sparse polynomials translates to the hardness of F ◦XOR for the appropriate

randomized (BPP,PP) communication model. The main problem at this point is to

understand how F relates to an appropriately hard f op. In particular, our interest is

when F is a symmetric function or a linear halfspace. These functions do not seem

to have the structure of a lifted function f op.

At this point, inspired by the work of Krause [Kra06], we make a simple but

somewhat counter-intuitve observation that turns out to be crucial. A function g is

called a monomial projection of h, if g can be obtained by substituting each input

variable of h with a monomial in variables of g. What is nice about such projections

is that for the polynomial sparsity measures (Lemma 3.3.4) that are relevant for us,

the complexity of g is bounded above by that of h. We observe (Lemma 3.3.6 and

Lemma 3.3.5) that if f is a symmetric (linear threshold) function, then there exists

a symmetric (linear threshold) function F such that f op is a monomial projection
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of F . Moreover, the combinatorial parameters of f that caused its hardness against

low-degree polynomials, nicely translate to combinatorial parameters of F that have

been conjectured to cause hardness of F against sparse (low weight) polynomials. By

our LP duality theorems, these result in the hardness of F ◦XOR against randomized

communication protocols as well.

The above describes the general framework of our passage from polynomials to

communication protocols. We describe below the particular instantiations of this

framework for each of the lower bounds that we prove.

PP Complexity

We prove two main results regarding PP complexity by showing explicit upper bounds

on polynomial margin of certain functions. The first is to reprove an exponential

separation between PP and UPP, making use of the above framework. For this, it

is natural to prove a strong PP lower bound against a function of the type F ◦ XOR

where F is a linear threshold function. Proving a polylogarithmic UPP upper bound

for such a function is straightforward (see Claim 2.3.10). However, precisely this

feature of F makes it difficult to prove a strong PP lower bound. Goldmann et

al. [GHR92] used an ingenious specialized argument directly establishing that the

discrepancy is small.2 We, on the other hand, use Theorem 3.1.4 which directs us in

proving that F must have small polynomial margin. The challenge here is to prove

a strong unrestricted degree polynomial margin lower bound against a function with

sign degree just 1. We use a variety of techniques to prove this. First, we use a

result of Sherstov, Theorem 3.2.3, which states that there exists a linear threshold

function f which requires linear degree to approximate uniformly, even with error

inverse exponentially close to 1. Second, we use lifting as depicted in Figure 3.1 to

show that the polynomial margin (unrestricted degree) of f op is exponentially small.

We then use our monomial projection lemma for threshold functions, Lemma 3.3.5, to

embed such a lifted function in a linear threshold function F without blowing up the

weights too much. Finally, we exploit the fact that the Universal Threshold function

(UTHR) embeds any other threshold function with at most a quadratic loss in number

of variables. The last step of considering UTHR is needed only to match the currently

best known explicit exponential separation of PP and UPP.

As a second application of our framework to PP complexity, we prove Theorem

3.1.5, which states that for symmetric F , the PP complexity of F ◦XOR is essentially

the odd-even degree of F . The main challenge here is to work with the notion of

2In Chapter 5, we extend the argument of Goldmann et al. to the multi-party NOF model.
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odd-even degree, which has no immediate algebraic interpretation as opposed to sign

degree. Lemma 3.3.6 solves this by essentially showing that there exists a symmetric

f whose sign degree corresponds to the odd-even degree of F , such that f op is a

monomial projection of F . Finally, our lifting lemma, Lemma 3.3.1, shows that the

margin of f op must be small if the base function f has large sign degree.

BPP Complexity and Approximate Weight

We first make a simple observation that the polynomial margin of a function F equals

its threshold weight, as defined in Definition 3.2.7. Just as the notion of threshold

degree inspires the natural notion of approximate degree, threshold weight inspires the

definition of approximate weight as in Definition 2.4.9. In Section 3.5, we consider

a linear program capturing the (1/3)-approximate weight of a symmetric function

F : {−1, 1}n → {−1, 1}. Using linear programming duality and the generalized

discrepancy method, we show in Theorem 3.1.7 that log wt1/3(F ) is a lower bound on

BPP(F ◦ XOR).

The general framework of Figure 3.1 then prescribes us to find a suitable sym-

metric f such that f op has large approximate weight and is a monomial projection

of F . Lemma 3.3.6 provides such a monomial projection in which the combinatorial

quantity r(F ) corresponds to another combinatorial quantity Γ(f), which is defined

in Section 3.2. Paturi [Pat92] showed that Γ(f) characterizes the approximate degree

of f . The polynomial hardness amplification of Figure 3.1, via Lemma 3.3.1, implies

that f op, and therefore F , has large approximate weight. This already proves The-

orem 3.1.2 which was conjectured by Ada et al. [AFH12]. Moreover, Theorem 3.1.7

implies the hardness of F ◦ XOR against bounded-error protocols.

3.2 Preliminaries

We provide the necessary preliminaries in this section.

Definition 3.2.1 (Universal threshold). Define a class of threshold functions, Ul,k :

{{−1, 1}k}l → {−1, 1} defined by

Ul,k(x1,1, . . . , x1,k, . . . , xl,1, . . . , xl,k) = sgn

(
k∑
i=1

l∑
j=1

2ixi,j +
1

2

)
.

The constant term 1
2

is added to ensure that the sum inside the brackets is never

0.
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Fact 3.2.2 (Minsky and Papert [MP69]). Ul,k is universal in the sense that any

linear threshold function on n variables occurs as a subfunction of Ul,k for some

l, k ∈ O(n log n).

We use the notation UTHR to denote such a function.

Recall that the weight of a polynomial p, denoted wt(p), is defined to be the

sum of absolute values of its coefficients in the unique multilinear expression for

p. For a polynomial of weight 1, say p, which sign represents a function f , we

say that p represents f with a margin of value minx∈{−1,1}n f(x)p(x). Let us also

define a notion of the error in a pointwise approximation of a function by low degree

polynomials. This notion is studied widely in classical approximation theory, see

[SZ09, She11a, Tha16] for example. Note that we do not restrict the weight of the

approximating polynomial in this case.

εd(f) , min
p:deg(p)≤d

(
max

x∈{−1,1}n
|p(x)− f(x)|

)
. (3.1)

Sherstov [She16c] proved that there exists a linear threshold function which cannot

be approximated well, even by large degree polynomials.

Theorem 3.2.3 ([She16c], Cor 3.3). There exists a linear threshold function f :

{−1, 1}n → {−1, 1} and an absolute constant c > 0 such that

εcn(f) > 1− 2−cn.

Moreover, the weights of the coefficients in the function have magnitude at most 2n.

Note that the signed monomial complexity (see Definition 2.4.5) of a function f

exactly corresponds to the minimum size Threshold of Parity circuit computing it,

since monomials are just parities.

Theorem 3.2.4 ([Zha92]). Let f : {−1, 1}n → {−1, 1} be a symmetric boolean func-

tion such that degoe(f) = logO(1) n. Then, f can be computed by a quasi-polynomial

size Threshold of Parity circuit.

The following is a result by Paturi [Pat92] which gives us tight bounds on the

approximate degree of symmetric functions.

Theorem 3.2.5 ([Pat92]). For any symmetric function f : {0, 1}n → {−1, 1}, define

the quantity Γ(f) = min{|2k − n+ 1| : Df (k) 6= Df (k + 1) and 0 ≤ k ≤ n − 1}.
Then,

d̃eg2/3(f) = Θ(
√
n(n− Γ(f))).
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Definition 3.2.6. For functions f, g : {−1, 1}n → {−1, 1} and a distribution ν on

{−1, 1}n, define the correlation between f and g under the distribution ν to be

corrν(f, g) = Eν [f(x)g(x)].

Definition 3.2.7 (Threshold weight). Define the threshold weight of a function f :

{−1, 1}n → {−1, 1}, denoted by wt±(f) to be the weight of a minimum weight real

polynomial p such that p(x)f(x) ≥ 1 for all x ∈ {−1, 1}n.

Note that this definition differs from the notion of more widely studied notion of

threshold weight (see for example [Kra06], [She11a], [BT15b]), where the coefficients

of p are restricted to be integer valued. It is convenient for us to work with the notion

as defined in Definition 3.2.7 because of its following relationship with the polynomial

margin, which can be easily verified.

Lemma 3.2.8. For any function f : {−1, 1}n → {−1, 1},

m(f) =
1

wt±(f)
.

The following theorem is due to Ada et al. [AFH12], which characterizes the weight

of a symmetric function.

Theorem 3.2.9 ([AFH12]). For any symmetric function f : {−1, 1}n → {−1, 1},

log(wt(f)) = Θ

(
r(f) log

(
n

r(f)

))
.

Goldmann et al. [GHR92] exhibited a distribution under which the one way com-

munication complexity of U4n,n ◦ XOR is large. Sherstov [She08] noted that the same

proof can be used to show that PP(U4n,n ◦ XOR) is large as well.

Remark 3.2.10. We remark here that the function considered by Goldmann et

al. was not exactly U4n,n ◦ XOR, because the variables feeding to the XOR gates had

a mild dependence on each other. Thus the discrepancy bound they obtained was

slightly stronger than as stated above. However, we will refer to UTHR ◦ XOR as the

GHR function.

Sherstov defined the notion of a pattern matrix communication game in [She11a].

Let n be a positive integer and f : {0, 1}n → {−1, 1}. Alice is given 2n bits

x1,1, x1,2, x2,1, x2,2, . . . , xn,1, xn,2. Bob is given 2n bits z1, z2, . . . , zn, w1, w2, . . . wn. De-

fine PM to be the function on 4 bits defined as PM(x0, x1, z, w) = xz ⊕ w. In the
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pattern matrix game corresponding to f , the PM gadget is applied on each tuple

{xi,1, xi2 , zi, wi}, and the resultant n bit string is fed as input to f . This is the com-

posed function, f ◦PM. Notice that this is similar to the lifting as defined in Equation

3.2.

Theorem 3.2.11 ([She11a] Thm 1.5). Let F = f ◦ PM for a given function f :

{0, 1}n → {−1, 1}. Then

disc(F ) ≤ min
d=1,...,n

max

{(
n

W (f, d− 1)

)1/2

,

(
1

2

)d/2}
.

In the above theorem, W (f, d− 1) corresponds to the minimum weight of a poly-

nomial of degree d− 1 with integer weights which sign represents f .

Remark 3.2.12. Sherstov defined pattern matrices in a more general fashion, where

n bits could be split into t blocks containing n/t elements each. However, for the

purposes of this thesis, we only consider the case when each block is of size 2.

The following theorem, first proposed by Klauck [Kla07], provides a tool for prov-

ing bounded-error communication lower bounds for functions. Its proof may be found

in [Cha09, CA08], for example.

Theorem 3.2.13 (Generalized discrepancy). Let F,G : {−1, 1}n × {−1, 1}n →
{−1, 1} and ν be a distribution over {−1, 1}n × {−1, 1}n such that corrν(F,G) ≥ δ.

Then.

Rε(F ) ≥ log

(
δ − 1 + 2ε

discν(G)

)
.

3.3 Lifting Functions

In this section we first show how we ‘lift’ functions as introduced by Krause and

Pudlák [KP97]. We then show how certain hardness properties of the base function

translate to related hardness properties of the lifted function. Then, we show how

lifted functions can be embedded in certain ‘simple’ functions, if the base function

was ‘simple’ itself. Finally, we list the consequences we obtain for lifting symmetric

functions, which include resolving conjectures posed by Ada et al. [AFH12] and Zhang

[Zha92].
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3.3.1 Lifting Functions by the Krause-Pudlák Selector

In this section, we show how certain hardness properties of a function f can be

amplified into other hardness properties of a particular lifted function obtained from

f .

For any f : {−1, 1}n → {−1, 1}, define a function f op : {−1, 1}3n → {−1, 1} as

follows.

f op(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) = f(u1, . . . , un) (3.2)

where for all i, ui = (xi ∧ zi) ∨ (yi ∧ z̄i).3 Intuitively speaking, the value of zi

decides whether to feed xi or yi as the ith input to f . This method of lifting f was

introduced by Krause and Pudlák [KP97]. The following lemma translates degree-

hardness properties of f into other monomial/weight-hardness properties of f op. The

proof of this lemma is based on ideas from [KP97].

Lemma 3.3.1. Let f : {−1, 1}n → {−1, 1} be any function.

1. εd(f) > 1− 2−d for some d ≥ 2 =⇒ m(f op) ≤ 2−d+1.

2. mon±(f op) ≥ 2deg±(f).

3. wt1/3(f op) ≥ 2d̃eg2/3(f)−1.

Proof. We first prove part 1.

Let p be a polynomial of weight 1 representing f op with margin at least 1
2d−1 , and

say p =
∑

S⊆[n]×[n]×[n]

wSχS. Recall that f op (and also p) has 3n input variables. For

this proof, we view the input variables as {xj,1, xj,2, zj|j ∈ {1, . . . , n}}, where zi’s are

the ‘selector’ variables.

For any fixing of the z variables, define a relevant variable to be one that is

‘selected’ by z. Thus, for each j ∈ {1, . . . , n}, exactly one of {xj,1, xj,2} is relevant.

Analogously, define a relevant monomial to be one that contains only those variables

selected by z. For a uniformly random fixing of z and any subset S ⊆ [n] such that

|S| ≥ d,

Pr
z

[χS is relevant] ≤ 1

2d
.

3The interested reader may note that fop is exactly the same function as f composed with the
Indexing gadget.
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Now since wt(p) = 1, we have

Ez[weight of relevant monomials in p
∣∣
z

of degree at least d]

=
∑
|S|≥d

|wS| · Pr
z

[χS is relevant] ≤ 1

2d

∑
|S|≥d

|wS| ≤
1

2d
.

Thus, there exists a fixing of the z variables such that the weight of the relevant

monomials of degree at least d in p
∣∣
z

is at most 1
2d

. Select this fixing of z.

• Note that p
∣∣
z

is a polynomial on only the variables {xi,1, xi,2|i ∈ {1, . . . , n}}.
Drop the relevant monomials of degree at least d from p

∣∣
z

to obtain a polynomial

p1.

• Observe that p1 sign represents f op
∣∣
z

with margin at least 1
2d−1 − 1

2d
= 1

2d
.

• For each j ∈ {1, . . . , n}, denote the irrelevant variable by xj,ij . Consider the

polynomial p2 on n variables defined by p2 = Ex1,i1
,...,xn,in

[p1], where the expecta-

tion is over each irrelevant variable being sampled uniformly and independently

from {−1, 1}.

• It is easy to see that any monomial containing an irrelevant variable in p1

vanishes in p2. Also note that p2 is a polynomial of degree at most d, and it

must sign represent f with margin at least 1
2d

. This leads to a contradiction

since we assumed that εd(f) > 1− 1
2d

.

Part 2 was proved in [KP97]. Its proof, and the proof of Part 3 follow along extremely

similar lines as the above proof, and we omit them.

3.3.2 Lifts as Projections of Simpler Functions

In this section, we show how lifts of threshold (and symmetric) functions can be

viewed as the projections of threshold (symmetric) functions.

Definition 3.3.2 (Monomial projection). We call a function g : {−1, 1}m → {−1, 1}
a monomial projection of a function f : {−1, 1}n → {−1, 1} if g(x1, . . . , xm) =

f(M1, . . . ,Mn), where each Mi is a monomial in the variables x1, . . . , xm.

Remark 3.3.3. Note that since our input domain is {−1, 1}m, a monomial M =

Πi∈Sxi is the same as the XOR of the variables in the monomial, that is M =
⊕

i∈S xi.

The following lemma is an easy consequence of definitions.
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Lemma 3.3.4. For any functions f : {−1, 1}n → {−1, 1} and g : {−1, 1}m → {−1, 1}
such that g is a monomial projection of f , and any ε > 0, we have

m(f) ≤ m(g),

mon±(g) ≤ mon±(f),

wt(g) ≤ wt(f),

wtε(g) ≤ wtε(f).

We first show that any lifted threshold function can be viewed as a monomial

projection of a threshold function with a similar number of input variables. This

proof is based on methods of [Kra06].

Lemma 3.3.5. Given any linear threshold function f : {−1, 1}n → {−1, 1}, there

exists a linear threshold function f ′ : {−1, 1}4n → {−1, 1} such that f op is a monomial

projection of f .

Proof. Let f : {−1, 1}n → {−1, 1} be a linear threshold function such that m(f op) ≤

δ. Fix a threshold representation for f , that is f(x) = sgn

(
n∑
i=1

wixi

)
. Note that

f op(x, y, z) = sgn

(
n∑
i=1

wi

(
xi(1− zi)

2
+
yi(1 + zi)

2

))

= sgn

(
n∑
i=1

wi(xi + yi − xizi + yizi)

)
.

Consider a linear threshold function f ′ : {−1, 1}4n → {−1, 1} defined as

f ′(x, y, u, v) = sgn

(
n∑
i=1

wi(xi + yi − ui + vi)

)
.

Clearly, f op is a monomial projection of f ′.

Lemma 3.3.6. Given a symmetric function F : {−1, 1}4n → {−1, 1}, defined by the

predicate DF : [n] → {−1, 1}, define a symmetric function f : {−1, 1}n → {−1, 1}
defined by the predicate Df (b) = DF (2b + n) for all b ∈ {0, 1, . . . , n}. Then, f op is a

monomial projection of F .
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Proof. Let g : {−1, 1}3n → {−1, 1} be defined as follows.

g(x1, . . . xn, y1, . . . , yn, z1, . . . , zn)

= F (x1, . . . , xn, y1, . . . , yn,−x1z1, . . . ,−xnzn, y1z1, . . . , ynzn).

Clearly, g is a monomial projection of F . We show now that g = f op.

For every input to g and each i ∈ [n], define the i’th relevant variable to be xi if

zi = −1 (define yi to be the irrelevant variable in this case), and yi if z1 = 1 (xi is

irrelevant in this case). Suppose there are b many relevant variables with value −1 on

a fixed input x1, . . . , xn, y1, . . . , yn, z1, . . . , zn and n − b relevant variables with value

1. Say (x1, . . . , xn, y1, . . . , yn,−x1z1, . . . ,−xnzn, y1z1, . . . , ynzn) contains a many −1’s.

Then,

4n− 2a =
n∑
i=1

xi + yi − xizi + yizi =
n∑
i=1

xi(1− zi) + yi(1 + zi) = 2n− 4b

=⇒ a = 2b+ n.

Thus,

g(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) = DF (2b+ n) = Df (b)

= f op(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn).

The last equality follows from Equation 3.2.

In fact, the proof of Lemma 3.3.6 can be seen to imply the following lemma.

Lemma 3.3.7. Given a symmetric function f : {−1, 1}n → {−1, 1} defined by the

predicate Df (b), define a function F : {−1, 1}4n → {−1, 1} such that on inputs of

Hamming weight 2b + n for some b ∈ {0, 1, . . . , n}, F takes the value Df (b), and F

takes arbitrary values on inputs of Hamming weight not in {2b+n : b ∈ {0, 1, . . . , n}}.
Then, f op is a monomial projection of F .

3.3.3 Consequences for Symmetric Functions

In this section, we show consequences of hardness amplification of lifted symmetric

functions.

We first prove Theorem 3.1.1.

Proof of Theorem 3.1.1.
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• Assume that n is even and that r − 1 is a multiple of 4. (If not, we can fix a

constant number of input bits). Note that DF (r − 1) 6= DF (r + 1). Further

assume r0(F ) > r1(F ). Define F ′ : {0, 1}2r → {−1, 1} by DF ′(i) = DF (i).

It suffices to show log wt1/3(F ′) ≥ c′r for some universal constant c′ > 0. (If

r1(F ) ≥ r0(F ), define F ′ : {0, 1}2r → {−1, 1} by DF ′(i) = DF (4n − 2r + i),

and an analogous argument to the one that follows can be carried out. Define

f : {0, 1}(r−1)/2 → {−1, 1} by Df (i) = DF ′(2i + (r − 1)/2). By Lemma 3.3.6,

f op is a monomial projection of F ′. Note that Df

(
r−1

4

)
6= Df

(
r−1

4
+ 1
)
, and

thus Γ(f) ≤ 1. By Theorem 3.2.5, d̃eg2/3(f) = Θ(r).

Using Lemma 3.3.1 and Lemma 3.3.4, we conclude that there exists a universal

constant c1 > 0 such that

log(wt1/3(F )) ≥ log(wt1/3(F ′)) ≥ log(wt1/3(f op)) ≥ c1r. (3.3)

• Consider any symmetric function F : {−1, 1}4n → {−1, 1} such that degoe(F ) ≥
4j where j ≥ 4. Assume that there are at least 2j many (i, i+ 2) sign changes

in [0, 3n]. Further assume that at least j of them occur when i’s are even

integers (if not, set one variable to −1). Define a family of symmetric functions

{fi : {−1, 1}
4n

3i → {−1, 1} : i ∈ {0, 1, . . . , d 1
log 3

log
(

2n
j

)
e}} as follows.

∀b ∈
[

4n

3i

]
, Dfi(b) = DF

(
2b+

4n

3i

)
.

(If there were less than j many (i, i+ 2) sign changes in [0, 3n] for even integers

i, then there must be at least j many (i, i + 2) sign changes in [n, 4n]. In this

case, define Dfi(b) = DF

(
4n− 2b− 4n

3i

)
, and an argument similar to the one

that follows can be carried out).

Note that the sign degree of fi equals the number of (k, k + 2) sign changes in

the spectrum of F in the interval [ n
3i
, n

3i−1 ]. Since DF has at least bj/2c many

(k, k + 2) sign changes in the interval [bj/2c, 3n], this implies that at least one

of the fi’s has at least bjc/2
d 1

log 3
log( 2n

j )e
many (k, k + 1) sign changes (sign degree).

Using Lemma 3.3.6, Lemma 3.3.1 and Lemma 3.3.4, we obtain that there exists

a constant c2 > 0 such that

mon±(F ) ≥ 2c2j.
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• The proof of the Part 3 follows along extremely similar lines as that of Part 2,

and we omit it.

We next prove Theorem 3.1.2, resolving a conjecture of Ada et al. [AFH12].

Proof of Theorem 3.1.2. It follows as a direct consequence of Part 1 of Theorem 3.1.1

and the upper bound in Theorem 3.2.9.

Finally, we prove Theorem 3.1.3 here, settling a conjecture of Zhang [Zha92].

Proof of Theorem 3.1.3. The upper bound follows from Theorem 3.2.4. It suffices to

show a lower bound for when degoe(f) ≥ 16. The lower bound follows from Part 2 of

Theorem 3.1.1 in this case.

3.4 Discrepancy of XOR Functions

In this section, we analyze the discrepancy of XOR functions.

3.4.1 Margin-Discrepancy Equivalence

In this section, we prove Theorem 3.1.4, which is a necessary and sufficient approxi-

mation theoretic condition of f in order for f ◦ XOR to have small discrepancy.

Proof of Theorem 3.1.4. We first show that m(f) ≤ m(f ◦ XOR). For notational

convenience, let us denote f ◦XOR by F . View f ’s inputs as x1, . . . xn, and F ’s inputs

as y1, . . . , yn, z1, . . . , zn, where f is fed y1 ⊕ z1, . . . , yn ⊕ zn. Let p be any polynomial

of weight 1 sign representing f . Replace every variable xi in p by yizi. Clearly, the

new polynomial obtained sign represents F with the same margin as p represented f ,

and the weight remains unchanged. Thus, m(f) ≤ m(F ).

Next, we show that m(F ) ≤ 4disc(F ). Let λ denote a distribution under which

discλ(F ) = disc(F ), and let P (x, y) =
∑

S⊆[2n] cSχS(x, y) be a polynomial of weight

1, which sign represents F .
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m(F ) ≤ Eλ[F (x, y)P (x, y)]

≤ Eλ

F (x, y)
∑
S⊆[2n]

cSχS(x, y)


≤

 ∑
S⊆[2n]

|cS|

 · max
S⊆[2n]

(|Eλ[F (x, y)χS(x, y)]|)

≤

∣∣∣∣∣∣∣∣
∑

χS(x)=1
χS(y)=1

F (x, y)λ(x, y)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑

χS(x)=1
χS(y)=−1

F (x, y)λ(x, y)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑

χS(x)=−1
χS(y)=1

F (x, y)λ(x, y)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑

χS(x)=−1
χS(y)=−1

F (x, y)λ(x, y)

∣∣∣∣∣∣∣∣
≤ 4disc(F ).

Thus, m(F ) ≤ 4disc(F ).

Now we show that disc(F ) ≤ m(f).

Let us first write a program whose optimal value corresponds to the margin of f .

Variables ∆, {αS : S ⊆ [n]}
Maximize ∆

s.t. f(x)
∑
S⊆[n]

αSχS(x) ≥ ∆ ∀x ∈ {−1, 1}n∑
S⊆[n]

|αS| ≤ 1

∆ ∈ R
αS ∈ R ∀S ⊆ [n]

We write another linear program, which is easier to work with.
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Variables ∆, {α′S : S ⊆ [n]}, {α′′S : S ⊆ [n]}
Maximize ∆

s.t. f(x)
∑
S⊆[n]

χS(x)(α′′S − α′S) ≥ ∆ ∀x ∈ {−1, 1}n∑
S⊆[n]

(α′S + α′′S) ≤ 1

∆ ∈ R
α′S, α

′′
S ≥ 0 ∀S ⊆ [n]

Note that any solution to the first program is a valid solution to the second one,

by setting one of α′S or α′′S to 0, and the other to |αS| for each S ⊆ [n]. We can

also assume that a solution to the second program must have α′S = 0 or α′′S = 0

for each S ⊆ [n]. If this was not the case, one could reduce the values of α′S and

α′′S by the same amount, thus not changing the value of α′′S − α′S, and not violating

any constraints. This gives us a solution to the first program by setting αS = α′′S if

α′′S 6= 0, and αS = α′S otherwise. Thus, the optima of the two programs above are

equal.

Let us now look at the corresponding dual to the above linear program. Notice

that the program looks like a minimization problem with the objective to minimize

max
S⊆[n]

∣∣∣f̂µ(S)
∣∣∣ under a variable distribution µ on {−1, 1}n.

Variables ε, {µ(x) : x ∈ {−1, 1}n}
Minimize ε

s.t. |
∑
x

µ(x)f(x)χS(x)| ≤ ε ∀S ⊆ [n]∑
x

µ(x) = 1

ε ≥ 0

µ(x) ≥ 0 ∀x ∈ {−1, 1}n

Thus, if f has margin at most δ, there exists a distribution µ on {−1, 1}n such

that
∣∣∣f̂µ(S)

∣∣∣ ≤ δ
2n

for all S ⊆ [n]. Let µ⊕ be a distribution denoting the lift of

µ on {−1, 1}n × {−1, 1}n. That is, µ⊕(x, y) = 1
2n
µ(x ⊕ y). We now show that

the discrepancy of F is small under µ⊕. For matrices A,B, let A ◦H B denote the

Hadamard (entrywise) product of A and B. Note that under the distribution µ⊕, the
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discrepancy of F is

discµ⊕(F ) = max
S⊆[n],T⊆[n]

1TS (µ⊕ ◦H F )1T

≤ ||µ⊕ ◦H F || · 2n. Cauchy-Schwarz

Thus,

discµ⊕(F ) ≤ ||fµ ◦ XOR||
2n

· 2n = 2n · ||f̂µ||∞ ≤ δ.

Here, the first inequality follows from the definition of µ⊕, and the following equality

follows from Lemma 2.2.3. This proves the claim.

We remark here that Linial and Shraibman [LS09c] had shown a similar equiva-

lence between the discrepancy of a matrix (the communication matrix of the target

function) and its margin. This margin refers to the margin of the matrix, and not

the polynomial margin of the base function. However, since we do not use this notion

in the rest of this thesis, we overload notation and use m(A) to denote the margin of

the matrix A. Define the margin of an m× n sign matrix A as

m(A) = sup min
i,j

|〈xi, yj〉|
||xi||2||yj||2

where the supremum is over all choices of x1, . . . , xm, y1, . . . , yn ∈ Rm+n such that

sgn(〈xi, yj〉) = ai,j for all i, j. Linial and Shraibman [LS09c] showed that the margin

of a sign matrix is equivalent to its discrepancy up to a constant factor.

Theorem 3.4.1 ([LS09c] Thm 3.1). For every sign matrix A,

disc(A) ≤ m(A) ≤ 8disc(A).

We now note that Theorem 3.1.4 implies the first inequality of Theorem 3.4.1 for

the special case of XOR functions.

Claim 3.4.2. Let f : {−1, 1}n → {−1, 1}. Then,

m(f) ≤ m(Mf◦XOR).

Proof. Let p =
∑

S⊆[n] cSχS be a polynomial which sign represents f with margin δ.

This implies p′(x, y) =
∑

S⊆[n] cSχS(x)χS(y) sign represents f ◦ XOR with margin δ.

We will exhibit 2n+1 vectors, {uT : T ⊆ [n]} and {vT : T ⊆ [n]} in R2n such that

m(Mf◦XOR) ≥ δ. Index the coordinates by characteristic sets, T ⊆ [n]. For a set
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T ⊆ [n], we use wT to denote the corresponding characteristic vector in R2n . Define

uT (S) = vT (S) =
√
cSχS(wT ).

Since wt(p′) = 1, ||uT ||2 = ||vT ||2 = 1. Also, 〈uT1 , vT2〉 =
∑

S⊆[n] cSχS(wT1⊕wT2) ≥
δ since p′ sign represents f ◦ XOR with margin δ.

Thus,

m(Mf◦XOR) = sup min
T1,T2

|〈uT1 , vT2〉|
||uT1||2||vT2||2

≥ δ.

3.4.2 A New Separation of PP from UPP

In this section, we show here how to obtain an alternate proof that the GHR function

has large PP complexity. Since GHR ∈ THR◦XOR, Claim 2.3.10 implies GHR ∈ UPP.

Proof of Theorem 3.1.6. Theorem 3.2.3 and Lemma 3.3.1 show the existence of a

linear threshold function f : {−1, 1}n → {−1, 1} such that m(f op) ≤ 2−cn for some

absolute constant c > 0. Lemma 3.3.4 and Lemma 3.3.5 then show existence of a linear

threshold function f ′ : {−1, 1}4n → {−1, 1} such that m(f ′) ≤ 2−cn. Using Theorem

3.1.4 and Theorem 2.3.8, we already obtain the existence of a linear threshold function

f ′ : {−1, 1}4n → {−1, 1} such that PP(f ′ ◦ XOR) ≥ c′n for some absolute constant

c′ > 0.

By Fact 3.2.2, one can embed f ′ in the universal threshold function by blowing up

the number of variables by a quadratic factor (note that we do not lose a logarithmic

factor as stated in Fact 3.2.2, because it can be verified that the weights of f ′ are at

most 2αn for an absolute constant α > 0). Thus, m(UTHR) ≤ 2−Ω(
√
n). By Theorem

3.1.4 and Theorem 2.3.8, we have

PP(GHR) = Ω(
√
n).

3.4.3 PM is Harder than XOR

In this section, we observe that if f ◦ XOR has small discrepancy, then so does f ◦
PM. Note that the converse is not true, since the inner product function is a large

subfunction of ⊕ ◦ PM, which has exponentially small discrepancy, but ⊕ ◦ XOR has

extremely large discrepancy, since it is just the Parity function.
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Theorem 3.4.3. Let f : {−1, 1}n → {−1, 1}. Then,

disc(f ◦ XOR) < δ =⇒ disc(f ◦ PM) ≤
√

4δn.

Proof. Consider f ◦ PM and substitute d = n in Theorem 3.2.11 to obtain

disc(f ◦ PM) ≤
(

n

W (f, d− 1)

)1/2

.

By Theorem 3.1.4, disc(f ◦ XOR) < δ =⇒ m(f) < 4δ. Suppose W (f, n − 1) ≤ 1
4δ

.

This would show existence of a polynomial with integer weights, say
∑

S⊆[n] λSχS, sign

representing f , and with total weight at most 1/4δ. This in turn implies existence

of a polynomial of weight 1, p =
∑
S⊆[n] λSχS∑
S⊆[n] |λS |

, which sign represents f with margin at

least 4δ, which is a contradiction. Thus,

disc(f ◦ PM) ≤
√

4δn.

Using the equivalence between PP and discrepancy (Theorem 2.3.8), we obtain the

following lower bound for the PP complexity of f ◦PM in terms on the PP complexity

of f ◦ XOR.

Corollary 3.4.4. For any f : {−1, 1}n × {−1, 1}n → {−1, 1},

PP(f ◦ PM) = Ω(PP(f ◦ XOR)− log n).

3.4.4 Symmetric Functions with Large Odd-Even Degree

We show that for any symmetric function F , PP(F ◦ XOR) is bounded below by

degoe(F ) (up to a logarithmic factor in the input size).

Proof of Theorem 3.1.5. Using Theorem 3.1.4 and Part 3 of Theorem 3.1.1, we obtain

that there exists a universal constant c > 0 such that PP(F ◦ XOR) ≥ cr/ log(n/r),

which proves Theorem 3.1.5.

3.4.5 An Upper Bound

In this section, we show that for any symmetric function f : {−1, 1}n → {−1, 1}, the

PP complexity of f ◦XOR is bounded above by essentially degoe(f). Our proof follows
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along the lines of Zhang [Zha92] who showed that a symmetric function with small

odd-even degree has a small Threshold of Parity circuit representation.

Theorem 3.4.5. Suppose f : {−1, 1}n → {−1, 1} is a symmetric function defined

by the predicate Df : {0, 1, . . . , n} → {−1, 1}. Say the odd-even degree of f equals k

and n is even. Then,

PP(f ◦ XOR) = O(k log n).

Proof. Define Seven = {i ∈ {0, 2, . . . , n} : Df (i) 6= Df (i+ 2)}, and define Sodd = {i ∈
{1, 3, . . . , n− 1} : Df (i) 6= Df (i+ 2)}. By our assumption, |Seven|, |Sodd| ≤ k.

Consider the polynomials peven, podd : {−1, 1}n → R defined by

peven(x) = Df (0) ·
∏

i∈Seven

(
n− 2i+ 1−

(
n∑
j=1

xj

))

and

podd(x) = Df (1) ·
∏
i∈Sodd

(
n− 2i+ 1−

(
n∑
j=1

xj

))
.

The polynomial p : {−1, 1}n → R defined by

p(x) = (1 + χ[n](x))peven(x) + (1− χ[n](x))podd(x)

sign represents f on {−1, 1}n.

We now use the simple observations that wt(q1 · q2) ≤ wt(q1) · wt(q2) and wt(q1 +

q2) ≤ wt(q1) + wt(q2). Thus,

wt(p) ≤ 2wt(peven) + 2wt(podd)

≤ 2(2n)k + 2(2n)k

≤ 4(2n)k.

Note that all the coefficients of p are integer valued. Thus, the polynomial p′ =
p

wt(p)
is a polynomial of weight 1, which sign represents f with margin at least 1

wt(p)
.

By Theorem 3.1.4 and Theorem 2.3.8,

PP(f ◦ XOR) ≤ O(log(wt(p))) ≤ O(k log n).
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3.5 Bounded-Error Communication Complexity of

XOR Functions

In this section, we analyze the BPP complexity of XOR functions.

Proof of Theorem 3.1.7. We first write a program which captures the best error a

weight w polynomial can achieve in approximating a given function f .

Variables ε, {αS : S ⊆ [n]}
Minimize ε

s.t.

∣∣∣∣∣f(x)−
∑
S⊆[n]

αSχS(x)

∣∣∣∣∣ ≤ ε ∀x ∈ {−1, 1}n∑
S⊆[n]

|αS| ≤ w

ε ≥ 0

αS ∈ R ∀S ⊆ [n]

By manipulations similar to those in Section 3.4.1, we obtain the following dual

program.

Variables ∆, {µ(x) : x ∈ {−1, 1}n}
Maximize

∑
x f(x)µ(x)−∆w

s.t. |
∑
x

µ(x)χS(x)| ≤ ∆ ∀S ⊆ [n]∑
x

µ(x) ≤ 1

∆ ≥ 0

µ(x) ≥ 0 ∀x ∈ {−1, 1}n

By strong linear programming duality, the optima of the two programs above

are equal. Let us call the optimal value OPT, which is clearly non-negative. Note

that in any feasible solution to the dual, 1 − ∆w ≥
∑
x

f(x)µ(x) − ∆w ≥ 0. This

implies ∆ ≤ 1
w

. Suppose a function f : {−1, 1}n → {−1, 1} satisfied wt1/3(f) = w′.

This means if we fix w = w′ in the programs, then OPT = 1/3, which implies∑
x

f(x)µ(x) ≥ 1/3 since ∆ is non-negative. Thus, any optimum solution to the dual
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must satisfy
∑
x

µ(x) ≥ 1/3. Define a distribution µ′ by µ′(x) = µ(x)∑
x∈{−1,1}n µ(x)

, and we

obtain |
∑
x

µ′(x)χS(x)| ≤ 3
w′

(hence, setting ∆ = 3
w′

gives us a feasible solution).

Write µ′ = g · ν uniquely, where g : {−1, 1}n → {−1, 1} is a boolean function and

ν : {−1, 1}n → [0, 1] is a distribution on the inputs. Thus, corrν(f, g) ≥ 1/3 (which

implies corrν⊕(f ◦ XOR, g ◦ XOR) ≥ 1/3), and

discν⊕(g ◦ XOR) ≤ ||gν ◦ XOR||
2n

· 2n = 2n · ||ĝν||∞ ≤ ∆ ≤ 3

w′
.

This, along with Theorem 3.2.13 implies

R2/5(f ◦ XOR) ≥ logw′ − 4,

proving Theorem 3.1.7.

Using Part 1 of Theorem 3.1.1 and Theorem 3.1.7, we obtain a new proof of

Theorem 3.1.9.

3.6 References

The results presented in this chapter are based on joint work with Arkadev Chat-

topadhyay ([CM17b] and some additional results from [CM17a]).
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Chapter 4

Unbounded-Error Communication

4.1 Introduction

4.1.1 Sign Rank

Recall that the sign rank of a {−1, 1} valued matrix M is defined to be the minimum

rank of a real valued matrix each of whose entries agrees in sign with the corresponding

entry of M . Although sign rank has found numerous applications in various areas of

computer science, we are interested in its applications to communication complexity

and boolean circuit complexity. Paturi and Simon [PS86] showed that the logarithm of

the sign rank of a (communication) matrix is essentially equivalent to the unbounded-

error 2-party communication complexity of the underlying function (Theorem 2.3.9).

Forster et al. [FKL+01] showed that proving lower bounds on the sign rank of a

function gives lower bounds on the minimum size of any THR◦MAJ circuit computing

it. Sign rank is known to be equivalent to dimension complexity, a geometric notion

that is of fundamental importance in computational learning theory. Even proving

lower bounds on the sign rank of a random function is non-trivial and was first done by

Alon et al. [AFR85]. On the other hand, proving strong lower bounds on the sign rank

of an explicit function, IP, was a breakthrough achieved by Forster [For02] fifteen years

later. Since that work, there have relatively been just a few results proving strong

sign rank lower bounds on explicit functions [She11b, RS10, BT16, BCH+16]. While

many basic questions about sign rank remain unanswered, new connections between

it and other areas of mathematics keep showing up (see for example [AMY16]).

An active research program is to search for functions in AC0 that are increasingly

hard to approximate under various natural measures. For example, a recent result

of Bun and Thaler [BT17] gave almost optimal bounds for approximate degree, and
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Sherstov [She15] gave the best known lower bounds on sign degree for functions in

AC0. Sign rank is arguably one of the hardest notions of approximability to analyze.

Razborov and Sherstov [RS10] exhibited a function computable by a depth-3 read-

once formula that has large sign rank. Improving this, Bun and Thaler [BT16] gave

the strongest known lower bound of 2Ω̃(n2/5) on the sign rank of a function in AC0.

All these results exploit the considerable computing power of AC0 to come up with

more intricate functions that are harder to approximate. Our work contrasts with

these efforts by finding, in some sense, a simpler function, still in AC0, that has large

sign rank.

4.1.2 Low-Depth Threshold Circuits

Linear threshold functions (LTF’s) form one of the most central classes of Boolean

functions that are studied. Every such function corresponds to the halfspace induced

by a real weight vector w ∈ Rn+1 denoted by THRw in the following way: For each

x ∈ {−1, 1}n,

THRw

(
x
)

= sgn

(
w0 +

n∑
i=1

wixi

)
.

It is well known [Mur71] that for every threshold gate with n inputs, there ex-

ists a threshold representation for it that uses only integer weights of magnitude

at most 2O(n logn). The power of an LTF depends on the magnitude of the weights

allowed. For instance, the Boolean function GT(x, y) that determines if the n-bit

integer x is at least as large as the n-bit integer y is an example of an LTF that has

no representation as an LTF with sub-exponentially small weights. Indeed in various

areas, several questions and problems have been solved when the LTF’s arising in

the study are restricted to have small weights, but extending them to unrestricted

weights are either open or have been solved after spending much research efforts.

Examples of such areas are learning theory [KOS04, She13b], pseudorandom gener-

ators [ST17] , analysis of Boolean functions [HKM12] and Boolean circuit complex-

ity [COS17]. Understanding the relative power of large weights vs. small weights in

the context of small-depth circuits having LTF’s as gates has attracted attention by

several works [AM05, GHR92, SB91, HP10, HP15, Raz92a, HMP+93, Hof96, GK98].

The class of all Boolean functions that can be computed by circuits of depth d

and polynomial size, comprising gates computing LTF’s (of polynomially bounded

weights), is denoted by LTd (L̂T d). The seminal work of Minsky and Papert [MP69]

showed that a simple function, Parity, is not in LT1. While it is not very hard to
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verify that Parity is in L̂T 2, an outstanding problem is to exhibit an explicit function

that is not in LT2. This problem is now a well-identified frontier for research in circuit

complexity. LT2 is one of the smallest known boolean circuit classes against which

no strong lower bounds are known.

By contrast, the relatively early work of Hajnal et al. [HMP+93] established the

fact that the Inner-Product modulo 2 function (denoted by IP), that is easily seen to

be in L̂T 3, is not in L̂T 2. It turns out that there is a natural class sitting between L̂T 2

and LT2, denoted by THR ◦MAJ, where the top THR gate has unrestricted weights,

but the weights of the bottom MAJ gates are restricted to be only polynomially large.

Goldmann et al. [GHR92] proved several interesting results, which implied the

following structure.

L̂T 2
[GHR92]

= MAJ ◦ THR
[GHR92]

( THR ◦MAJ ⊆ LT2

[GHR92]

⊆ L̂T 3.

In a breakthrough work, Forster [For02] showed that IP has sign rank 2Ω(n) for the

natural partition of input variables. This yielded an exponential separation between

THR ◦MAJ and L̂T 3. This meant that at least one of the two containments THR ◦
MAJ ⊆ LT2 and LT2 ⊆ L̂T 3 is strict. Alman and Williams [AW17] recently showed

interesting upper bounds on the ‘probabilistic sign-rank’ for functions in LT2. In

contrast, Amano and Maruoka [AM05] and Hansen and Podolskii [HP10] state that

separating THR◦MAJ from THR◦THR = LT2 would be an important step for shedding

more light on the structure of depth-2 boolean circuits. However, as far as we know,

there was no clear target function identified for the purpose of separating the two

classes. No progress on this question was made until our work. We emphasize here

that it is not a priori clear that these classes ought to be different, especially in light

of Goldmann et al.’s result that MAJ ◦MAJ = MAJ ◦ THR.

We show that indeed THR ◦ MAJ ( THR ◦ THR and elaborate on this in Sec-

tion 4.1.4.

4.1.3 Communication Complexity Frontiers

Functions whose communication matrix of dimension 2n×2n have sign rank bounded

above by a quasi-polynomial in n were shown in [PS86] to correspond exactly to the

complexity class UPP (see Theorem 2.3.9). The lower bound on the sign rank by

Razborov and Sherstov [RS10] implied that PH (in fact, Π2P) contains functions with
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large sign rank, rendering the sign rank technique essentially useless to prove lower

bounds against the second level of the polynomial hierarchy.

Indeed, there is a rich landscape of communication complexity classes below the

second level as discussed in a recent, almost exhaustive survey by Göös, Pitassi and

Watson [GPW18]. UPP is the strongest communication complexity class against

which we know how to prove explicit lower bounds. A natural question is until where

the sign rank method continues to yield lower bounds. Refer to Chapter 2 for formal

descriptions of various communication complexity classes.

Göös et al. [GPW18] conjectured two seemingly incomparable classes, AM ∩
coAM, S2P to contain functions of large sign rank. Each of these classes are con-

tained, plausibly strictly, in Π2P. Bouland et al. [BCH+16] recently resolved the first

conjecture, exhibiting a partial function in AM ∩ coAM which has large sign rank.1

We provide a strong confirmation of the second conjecture by showing that even a

sub-class of S2P contains a total function of large sign rank. We elaborate on this in

Section 4.1.4.

4.1.4 Our Work

In order to state our main result regarding unbounded-error communication, we first

define decision lists.

Definition 4.1.1 (Decision lists). A decision list of length k, is a sequence D =

(L1, a1), (L2, a2), . . . , (Lk, ak), where each ai ∈ {−1, 1}, and Lk is the constant −1

function. The decision list computes a function f : {−1, 1}n → {−1, 1} as follows.

If L1(x) = −1, then f(x) = a1; elseif L2(x) = −1, then f(x) = a2, elseif . . . , elseif

Lk(x) = −1, then f(x) = ak. That is,

f(x) =
k∨
i=1

(
ai
∧

Li(x)
∧
j<i

¬Lj(x)

)
.

We now recall the definition of our hard function, Fn, defined in Section 1.5.1.

Fn can be described as a decision list of ‘Equalities’ in the following way. The input,

of n = 2ml bits, is split into two disjoint parts, X ∈ {−1, 1}ml and Y ∈ {−1, 1}ml.
X and Y are further divided into l disjoint blocks as X1, . . . , Xl, Y1, . . . , Yl, each of

length m. The function Fn outputs −1 iff the largest index i ∈ [l] for which Xi = Yi

holds is an odd index. We set m = l1/3 + log l. Note that Fn is a decision list of

1It still remains unknown if there are total functions in AM ∩ coAM that have large sign rank.
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L1 L2 Lk ≡ −1

a1 a2 ak

· · ·

· · ·

1 1 1

−1 −1 −1

Figure 4.1: The decision list described in Definition 4.1.1

Equalities. This view of Fn is convenient while proving our communication class

separation (Theorem 4.1.4).

Fn can also be viewed as an XOR function as follows. Consider a simple adap-

tion of the well known ODD-MAX-BIT function [Bei94], which we define as follows.

OMB0
` acts on an l bit input, and outputs −1 iff the rightmost bit set to 1 occurs

at an odd index. OMB0
` is a linear threshold function, as explained by the following

representation.

OMB0
`

(
x
)

= −1 ⇐⇒
∑̀
i=1

(−1)i+12i (1 + xi) ≥ 0.5.

It is not hard to verify that Fn = OMB0
` ◦ OR`1/3+log ` ◦ XOR2. This view of Fn helps

while proving our main circuit complexity application (Theorem 4.1.3).

We show a strong lower bound on the sign rank of MFn , where the rows of MFn

are indexed by the inputs X, the columns by Y , and the (x, y)th entry is Fn(x, y). We

overload notation and refer to the sign rank of MFn as the sign rank of Fn. The follow-

ing is our main theorem regarding unbounded-error communication (Theorem 2.3.9

shows that UPP(Fn) is exactly characterized by the logarithm of its sign rank).

Theorem 4.1.2 (Main). The function Fn has sign rank 2Ω(n1/4).

A Separation of Threshold Circuit Classes

We first observe that Fn can be computed by linear sized THR ◦ THR formulas.

For each x ∈ {−1, 1}n, let ETHRw(x) = −1 ⇐⇒ w0 + w1x1 + · · · + wnxn = 0.

Thus, ETHR gates are also called exact threshold gates. By first observing that every

function computed by a formula of the form THR ◦ OR can also be computed by a

formula of the form THR ◦ AND with a linear blow-up in size, it follows that Fn can

be computed by linear size formulas of the form THR ◦ AND ◦ XOR2. Note that each

AND ◦ XOR2 is computable by an ETHR gate. Hence, Fn is in THR ◦ ETHR, a class
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that Hansen and Podolskii [HP10] showed is identical to the class THR ◦THR. Since

sign rank is a lower bound on THR ◦MAJ circuit size (see Lemma 4.2.3), our main

theorem (Theorem 4.1.2) and the above observation yield the following circuit class

separation.

Theorem 4.1.3. The function Fn can be computed by linear sized THR ◦ THR for-

mulas, but any THR ◦MAJ circuit computing it requires size 2Ω(n1/4).

Theorem 4.1.3 provides the first explanation for why current lower bound methods

fail to get traction with THR ◦ THR. Interestingly, it also suggests some new paths

along which progress can be made. This is discussed in Chapter 7.

A Separation of Communication Classes

The application of our main result to give a communication class separation was

brought to our notice by Göös [Göö17]. In order to state our communication class

separation, let us consider the complexity class PMA that is contained in S2P. A

function is in PMA if it can be computed by deterministic protocols of polylogarithmic

cost, where Alice and Bob have oracle access to any function in MA. The function Fn

under the natural input partition (recall that it can be expressed as a decision list of

equalities) can be efficiently solved by PMA protocols by an appropriate binary search,

and querying an OR ◦EQ oracle at each step. A formal description of this protocol is

given in Protocol 1.

Since the logarithm of sign rank of f essentially equals UPP(f) (see Theo-

rem 2.3.9), we prove the following as a consequence of Theorem 4.1.2.

Theorem 4.1.4. The function Fn witnesses the following communication complexity

class separation.

PMA * UPP.

Our result thus strongly confirms a conjecture of Göös et al. by exhibiting the

first total function in a complexity class contained, plausibly strictly, in Π2P, that

has large sign rank. More precisely, our function Fn is in PMA, a class seemingly well

below S2P. This yields Theorem 4.1.4.

On the other hand, it is known that PNP ( UPP and MA ( PP ( UPP. These

facts combined with Theorem 4.1.4 shows that PMA is right on the frontier between

what we understand and what we do not. Thus, proving lower bounds against PMA

protocols emerges as a natural program for advancing the set of currently known

techniques, given our work. Future directions are further discussed in Chapter 7.
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4.1.5 Our Techniques

We strive to prove a lower bound on the sign rank of a function F ∈ THR ◦ THR.

We are guided by the equivalence of sign rank and unbounded-error communication

complexity, due to Paturi and Simon [PS86] (Theorem 2.3.9). This sets our target

to showing that there is a function in THR ◦ THR that has large unbounded-error

communication complexity.

Finding a Candidate Function

Why should some function F ∈ THR ◦ THR have large unbounded-error communica-

tion complexity? A natural protocol one is tempted to use is the following. Sample

a sub-circuit of the top gate with a probability proportional to its weight. Then, use

the best protocol for the sampled bottom THR gate. Note that for any given input

x, with probability 1/2 + ε, one samples a bottom gate that agrees with the value

of F (x). Here, ε can be exponentially small in the input size. Thus, if we had a

small cost randomized protocol for the bottom THR gate that errs with probability

significantly less than ε we would have a small cost unbounded-error protocol for F .

Fortunately for us (the lower bound prover), there does not seem to exist any such

efficient randomized protocol for THR, when ε = 1/2n
Ω(1)

.

Taking this a step further, one could hope that the bottom gates could be any

function that is hard to compute with such tiny error ε. The simplest such canonical

function is EQ. Therefore, a plausible target is THR ◦ EQ. This still turns out to be

in THR ◦ THR as EQ ∈ ETHR. Moreover, EQ has a nice composed structure. It is

just AND ◦ XOR, which lets us re-express our target as F = THR ◦ AND ◦ XOR, for

some top THR that is ‘suitably’ hard. At this point, one might be drawn towards

the universal threshold function as being a candidate top LTF. However, there is

an inherent lack of structure in the universal threshold function, making it difficult

to analyze. Thus, we consider a simple LTF, namely OMB. We now view F as an

XOR function whose outer function, f turns out to have sufficiently good analytic

properties for us to prove that f ◦ XOR has high sign rank.

Analyzing the Candidate Function

We are naturally drawn to the work of Razborov and Sherstov [RS10] for inspira-

tion as they bound the sign rank of a three-level composed function as well. They

showed that AND ◦ OR ◦ AND2 has high sign rank. They exploited the fact that

this function embeds a pattern matrix inside it, which has nice convenient spectral
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sr(f ◦ XOR) large

f correlates poorly
with all parities

under approximately
smooth distribution µ

Spectral properties
of XOR functions
(Lemma 2.2.3)

Modified Forster’s theorem
[RS10] (Theorem 4.2.4)

f has no
low weight, good
‘mixed margin’
representation

LP duality LP1, LP2

Figure 4.2: Approximation theoretic hardness of f implies large sign rank of f ◦XOR
(Theorem 4.3.1).

properties as observed in [She11a]. These spectral properties dictate them to look for

an approximately smooth orthogonalizing distribution w.r.t which the outer function

f = AND ◦ OR has zero correlation with small degree parities. This naturally gives

rise to a linear program, that seeks to maximize the smoothness of the distribution

under the constraints of low-degree orthogonality. The main technical challenge that

Razborov and Sherstov overcome is the analysis of the dual of this LP using and

building appropriate approximation theoretic tools. We follow this general frame-

work of analyzing the dual of a suitable LP. However, as we are forced to work with

an XOR function, there are new challenges that crop up. This is understandable, for

if we take the same outer function of AND ◦ OR, then the resulting XOR function

has small sign rank. Indeed, this remains true even if one were to harden the outer

function to MAJ ◦ OR. This is simply because OR ◦ XOR is non-equality (NEQ). A

simple efficient UPP protocol for MAJ ◦ NEQ exists: pick a random NEQ and then

execute a protocol of cost O(log n) that solves this NEQ with error less than 1/n2.

Proof Outline

For the sake of continuity and convenience, we sketch a proof outline along with

schematics, as in Section 1.5.1. Figure 4.2 describes a general passage from the

problem of showing a lower bound on the sign rank of a function f ◦ XOR to a

sufficient problem of proving an approximation theoretic hardness property of f ,

namely f has no good ‘mixed margin’ representation by low weight polynomials.

Theorem 4.3.1 states the precise connection between the approximation theoretic

property of f and the sign rank of f ◦ XOR. This passage is made possible by using

well known spectral properties of XOR functions and LP duality. This is similar to
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Contradiction!
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g = OMB0
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Lemma 4.4.5

Lemma 4.4.4

Figure 4.3: Approximation theoretic analysis (Theorem 4.4.1)

earlier works [RS10, She11b, BT16, BCH+16], where the spectral properties of pattern

matrices were analyzed. The key difference between our work and theirs is in the

nature of the approximation theoretic problem that we end up with. While all these

previous works had to rule out good low degree representations, our Theorem 4.3.1

stipulates us to rule out good low weight representations of otherwise unrestricted

degree.

Our main technical contribution is Theorem 4.4.1 which shows that the func-

tion OMB0 ◦ OR is inapproximable by low weight polynomials of unrestricted degree,

in a sense which we elaborate on below. We prove this by a novel combination of

ideas, sketched in Figure 4.3, that differs entirely from analysis in earlier works. One

may view this result as a hardness amplification result, albeit specific to the function

OMB0. We start with the function OMB0 which has no low weight ‘worst case margin’

representation when the degree of the approximating polynomial is bounded [Bei94].

We show that on composition with large fan-in OR gates, the function OMB0 ◦ OR

becomes ‘mixed margin’-inapproximable by low weight polynomials, even with unre-

stricted degree. We believe this result to be of independent interest in the area of

analysis of Boolean functions and approximation theory.

The first step in our method is to borrow an averaging idea from Krause and

Pudlák [KP98] to show the following: a low weight good approximation of g ◦ORm by

a polynomial p over the parity (Fourier) basis implies that there exists a low weight

polynomial q over the OR basis which approximates g as well as p approximates

g ◦ORm, save an additive loss of at most 2−m. This transformation to q is very useful

because although it is still unrestricted in degree, it is over the OR basis, that is

vulnerable to random restrictions. Indeed, in the next step, we hit q with random

restrictions to reduce its degree. At this point, we extract a low weight and low
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degree polynomial r that still approximates grest, the restriction of g. We now appeal

to interesting properties of the ODD-MAX-BIT function by setting g = OMB0. First,

we observe that OMB0 on l bits, under random restrictions, retains its hardness as

it contains OMB0 on l/8 bits with high probability. Next, we show that OMB0 does

not have low degree good approximations by appealing to classical approximation

theoretic tools, suitably modifying the arguments of Buhrman et al. [BVdW07] and

Beigel [Bei94]. This provides us with the required contradiction.

4.1.6 Related Work

Long after Forster [For02] showed that an upper bound on the spectral norm of

a {−1, 1} valued matrix suffices to show sign rank lower bounds, Sherstov [She11b]

introduced an innovative method that designed a passage to a suitable approximation

problem via LP duality. This basic framework was again used by Razborov and

Sherstov [RS10], developing more approximation theoretic tools, to prove the first

exponential lower bounds of 2Ω(n1/3) on the sign rank of a function in AC0. This

function can be computed by a depth-3 linear sized circuit. Later, with a more

detailed approximation theoretic analysis, this bound was improved to 2Ω̃(n2/5) by Bun

and Thaler [BT16] for a more carefully chosen function, still in depth-3 AC0. Finally,

very recently, Bouland et al. [BCH+16] proved strong sign rank bounds for a partial

function with interesting applications. All of these works [She11b, RS10, BT16,

BCH+16] rely on the passage, invented by Sherstov [She11b] to an approximation

theoretic problem involving low degree polynomials. This passage is made possible

by exploiting the elegant spectral properties of communication matrices of the target

functions, following the basic pattern matrix method of Sherstov [She11a].

Unfortunately, it seems difficult to embed a pattern matrix in a function in

THR ◦ THR. Consequently, we come up with a different type of function, Fn, that is

an XOR function. Proving lower bounds on communication complexity of XOR func-

tions, in general, has received a lot of attention recently [MO09, ZS09, LZ10, Zha14,

HHL18, KMSY18]. However, there seem to be very few previous works that prove a

lower bound on the sign rank of an XOR function. All of these works (Section 4.8 of

this thesis, [HQ17, AFK17]) consider the sign rank of functions of the form f ◦ XOR

when f is symmetric. In contrast, our target function Fn is not a symmetric XOR

function. Moreover, both the works [HQ17] and [AFK17] obtain their result using

neat reductions from pattern matrices of symmetric functions, which had been ana-

lyzed by Sherstov [She11b]. Such a reduction for a function in THR◦THR is unknown,
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and plausibly impossible. This forces us to use a first-principle based argument for

bounding the sign rank of an XOR function. Such functions also have nice spectral

properties that are however different from those of pattern matrices. More specif-

ically, the approximation theoretic problem that one is led to in this case involves

polynomials with unrestricted degree but low Fourier weight. A similar flavored but

simpler problem was considered in Chapter 3, where we characterized the discrepancy

of XOR functions. In that chapter, the primal program asked for a distribution µ such

that f correlates poorly with all parities w.r.t µ. However, there was no smoothness

constraint imposed on µ in, which is what we are constrained to have in this chap-

ter. Analyzing this combination of high degree parity constraints and the smoothness

constraints is the main new technical challenge that our work addresses.

It is simple to verify that Fn is computed by a linear size AC0 circuit. Theo-

rem 4.1.2 therefore yields a new argument to show that AC0 has large sign rank.

While our bounds on the sign rank of Fn are weaker than that of [RS10, BT16],

Fn is simpler than the earlier functions in other ways. It is just a decision list of

‘Equalities’ that is therefore, both in the boolean circuit class THR ◦ THR and the

communication complexity class PMA. It is precisely this property of Fn that allows

us to simultaneously answer two open questions.

4.2 Preliminaries

4.2.1 Sign Rank

In a seminal result, Forster [For02] showed that the sign rank of a ±1 valued matrix is

bounded below in terms of the spectral norm of the matrix. This immediately yielded

exponential sign rank lower bounds for IP.

Theorem 4.2.1. For any ±1 valued m× n matrix M ,

sr(M) ≥
√
mn

||M ||
.

Forster et al. [FKL+01] generalized Forster’s result in the following way, which

can handle input matrices which are not ±1 valued, but all of whose entries are large

enough in magnitude.
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Theorem 4.2.2 (Forster et al. [FKL+01]). Let Mm×n be a real matrix with no 0

entries. Then,

sr(M) ≥
√
mn

||M ||
·min
x,y
|M(x, y)|.

Forster et al. also observed that functions with efficient THR◦MAJ representations

have small sign rank.

Lemma 4.2.3 (Forster et al. [FKL+01]). Let F : {−1, 1}n × {−1, 1}n → {−1, 1} be

a boolean function computed by a THR ◦MAJ circuit of size s. Then,

sr(MF ) ≤ sn,

where MF denotes the communication matrix of F .

We also require the following further generalization of Forster’s theorem [For02]

due to Razborov and Sherstov [RS10].

Theorem 4.2.4 (Razborov and Sherstov [RS10]). Let A = [Axy]x∈X,y∈Y be a real

valued matrix with s = |X||Y | entries, such that A 6= 0. For arbitrary parameters

h, γ > 0, if all but h of the entries of A satisfy |Axy| ≥ γ, then

sr(A) ≥ γs

||A||
√
s+ γh

.

4.2.2 Functions, Polynomials and Approximation

Definition 4.2.5 (OR polynomials). Define a function p : {−1, 1}n → R of the form

p(x) =
∑

S⊆[n] aS
∨
i∈S xi to be an OR polynomial. Define the weight of p (in the OR

basis) to be
∑

S⊆[n] |aS|, and its degree to be maxS⊆[n]{|S| : aS 6= 0}.

Remark 4.2.6. In the above definition, ‘OR monomials’ are defined as follows.

∨
i∈S

xi =

1 xi = 1 ∀i ∈ S

−1 otherwise.

Unless mentioned otherwise, all polynomials we consider will be over the parity basis.

Hansen and Podolskii [HP10] showed the following.

Theorem 4.2.7 (Hansen and Podolskii [HP10]). If a function f : {−1, 1}n → {−1, 1}
can be represented by a THR ◦ ETHR formula of size s, then it can be represented by

a THR ◦ THR formula of size 2s.
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For the sake of completeness and clarity, we provide the proof below.

Proof. Let h be an exact threshold function with the representation
∑n

i=1wixi = t.

There exists an εh > 0 such that
∑n

i=1wixi > t =⇒
∑n

i=1 wixi > t+ εh. Consider a

THR◦ETHR formula of size s which computes f . Say it computes sgn(c0 +
∑s

i=1 cifi),

where fi’s have exact threshold representations
∑n

j=1wi,jxj = ti, respectively. Con-

sider the THR ◦ THR formula of size 2s, given by sgn (
∑s

i=1 ci(gi,1 − gi,2 + 1)), where

gi’s are threshold functions with representations as follows.

gi,1 = 1 ⇐⇒
n∑
j=1

wi,jxj ≥ ti,

gi,2 = 1 ⇐⇒
n∑
j=1

wi,jxj ≥ ti + εfi .

It is easy to verify that this formula computes f .

Remark 4.2.8. In fact, Hansen and Podolskii [HP10] showed that the circuit class

THR ◦ THR is identical to the circuit class THR ◦ ETHR. However, we do not require

the full generality of their result.

We now note that any function computable by a THR ◦ OR formula can be com-

puted by a THR ◦ AND formula without a blowup in the size.

Lemma 4.2.9. Suppose f : {−1, 1}n → {−1, 1} can be computed by a THR ◦ OR

formula of size s. Then, f can be computed by a THR ◦ AND formula of size s.

Proof. Consider a THR ◦ OR formula of size s, computing f , say

f(x) = sgn

(
s∑
i=1

wi
∨
j∈Si

xj

)
.

Note that
s∑
i=1

wi
∨
j∈Si

xj =
s∑
i=1

−wi
∧
j∈Si

xcj.

Thus, sgn
(∑s

i=1−wi
∧
j∈Si x

c
j

)
is a THR ◦ AND representation of f , of size s.

We require the following well-known lemma by Minsky and Papert [MP69].

Lemma 4.2.10 (Minsky and Papert [MP69]). Let p : {−1, 1}n → R be any sym-

metric real polynomial of degree d. Then, there exists a univariate polynomial q of
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degree at most d, such that for all x ∈ {−1, 1}n,

p(x) = q(#1(x))

where #1(x) = |{i ∈ [n] : xi = 1}|.

We require the following approximation-theoretic lemma by Ehlich and Zeller [EZ64]

and Rivlin and Cheney [RC66].

Lemma 4.2.11 ([EZ64, RC66]). The following holds true for any real valued α > 0

and integer k > 0. Let p : R → R be a univariate polynomial of degree d <
√
k/4,

such that p(0) ≥ α, and p(i) ≤ 0 for all i ∈ [k]. Then, there exists i ∈ [k] such that

p(i) < −2α.

4.3 Sign Rank to Polynomial Approximation

In this section, we prove how a certain approximation theoretic hardness property of

f implies that the sign rank of f ◦ XOR is large, as outlined in Figure 4.2.

Let f : {−1, 1}n → {−1, 1} be any function, δ > 0 be a parameter, and X be

any subset of {−1, 1}n. We consider the following linear program, which has exactly

the same structure as in (LP1) in [She11b] except for one crucial difference described

below:

(LP1)

Variables ε, {µx : x ∈ {−1, 1}n}
Minimize ε

s.t.

∣∣∣∣∑
x

µ(x)f(x)χS(x)

∣∣∣∣ ≤ ε ∀S ⊆ [n]∑
x

µ(x) = 1

ε ≥ 0

µ(x) ≥ δ
2n

∀x ∈ X
µ(x) ≥ 0 ∀x ∈ {−1, 1}n

The first constraint in (LP1) specifies that correlation of f against all parities need to

be small w.r.t a distribution µ. Note that in [She11b], this constraint was only imposed

for low degree parities. This difference between the two linear programs forces us to

entirely change the analysis of the dual from the one in [She11b]. As discussed earlier

in Section 4.1.5, this analysis is one of our main technical innovations. The second last

constraint enforces the fact that µ is ‘δ-smooth’ over the set X. As we had indicated

earlier in Section 4.1.5, these constraints make analyzing the LP challenging.
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Standard manipulations (as in Section 3.4, for example) and strong linear pro-

gramming duality reveal that the optimum of (LP1) equals the optimum of (LP2).

Let OPT denote the optima of these programs.

(LP2)

Variables ∆, {αS : S ⊆ [n]}, {ξx : x ∈ X}
Maximize ∆ + δ

2n

∑
x∈X

ξx

s.t. f(x)
∑
S⊆[n]

αSχS(x) ≥ ∆ ∀x ∈ {−1, 1}n

f(x)
∑
S⊆[n]

αSχS(x) ≥ ∆ + ξx ∀x ∈ X∑
S⊆[n]

|αS| ≤ 1

∆ ∈ R
αS ∈ R ∀S ⊆ [n]

ξx ≥ 0 ∀x ∈ X

The first constraint of (LP2) indicates that the variable ∆ represents the worst

margin guaranteed to exist at all points. The second constraint says that at each

point x over the smooth set X, the dual polynomial has to better the worst margin

by at least ξx. If OPT is large, then it means that on average, the dual polynomial did

significantly better than the worst margin. It is for this reason we call the optimum

the ‘mixed margin’ as mentioned in Section 4.1.5.

We now show that an upper bound on OPT for any function f yields sign rank

lower bounds against f ◦ XOR. The proof idea is depicted in Figure 4.2.

Theorem 4.3.1. Let f : {−1, 1}n → R be any function. For any δ > 0 and X ⊆
{−1, 1}n, suppose the value of the optimum of (LP2) (and hence (LP1)) is at most

OPT. Then,

sr(f ◦ XOR) ≥ δ

OPT + δ · |Xc|
2n

.

Proof. By (LP1), there exists a distribution µ on {−1, 1}n such that µ(x) ≥ δ
2n

for

all x ∈ X, and max
S⊆[n]

|f̂µ(S)| ≤ OPT
2n

. By Lemma 2.2.3,

||Mfµ◦XOR|| = 2n ·max
S⊆[n]

∣∣∣f̂µ(S)
∣∣∣ ≤ OPT.
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Each x ∈ X contributes to 2n entries of Mfµ◦XOR whose absolute value is at least δ.

Plugging values in Theorem 4.2.4, we obtain

sr(f ◦ XOR) ≥ sr(fµ ◦ XOR) ≥
δ

2n
· 22n

OPT · 2n + δ
2n
· 2n · |Xc|

=
δ

OPT + δ · |Xc|
2n

,

which proves the desired sign rank lower bound.

4.4 Hardness of Approximating OMB0
` ◦ ORm

Below is our main technical result, capturing the essence of Figure 4.3, which says

that no dual polynomial exists with a large optimum value for (LP2) when f =

OMB0
` ◦
∨
`1/3+log ` : {−1, 1}`4/3+` log ` → {−1, 1}, even when the smoothness parameter

δ is as high as 1/4.

Theorem 4.4.1. Let f = OMB0
` ◦
∨
`1/3+log ` : {−1, 1}`4/3+` log ` → {−1, 1}, δ = 1/4

and X = {x ∈ {−1, 1}`4/3+` log ` :
∨

(x) = −1`}. Then for sufficiently large values of `,

the optimal value, OPT, of (LP2) is less than 2−
`1/3

81 .

Theorem 4.4.1 can be viewed as a hardness amplification theorem as follows. Our

base function is OMB0, which is known to be hard to approximate in the worst

case by low degree sign representing polynomials [Bei94, BVdW07]. We show that

a lifted version of this function, OMB0
` ◦ ORm, cannot be approximated well under

a significantly weaker notion of approximation where we permit any approximating

polynomial to have the following additional power.

• Unrestricted degree but low weight.

• It need not sign represent OMB0
` ◦ ORm, but a certain linear combination of

their worst case and average case margin is small (see (LP2)). In fact, it might

agree in sign with OMB0
` ◦ ORm on just one input!

In the remnant of this section, we list the various tools that go into proving Theo-

rem 4.4.1. We follow the schematic from Figure 4.3.

We first use an idea from Krause and Pudlák [KP98] which enables us to work

with polynomial approximations for g, given a polynomial approximation for g ◦
∨
m.

We use the following notation for the following two lemmas. For any set I ⊆ [`]× [m],

define J ⊆ [`] to be the projection of I on [`]; i ∈ J ⇐⇒ ∃j, xi,j ∈ I. For any
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y ∈ {−1, 1}`, let µy denote the uniform distribution over all inputs x ∈ {−1, 1}m`

such that
∨
m(x) = y. Lemma 4.4.2 and Lemma 4.4.3 represent the first implication

in Figure 4.3. The first tool we use is an approximation of monomials (in the parity

basis) by OR functions, with a small error.

Lemma 4.4.2. Let `,m be positive integers such that m > log `. For any set I ⊆
[`]× [m], y ∈ {−1, 1}`,∣∣∣∣∣∣Eµy

⊕
(i,j)∈I

xi,j

− 1

2
− 1

2

∨
i∈J

yi

∣∣∣∣∣∣ ≤ 2`2−m.

The proof of Lemma 4.4.2 appears in the proof of Lemma 2.3 in [KP98]. However,

we reproduce the proof below for clarity and completeness.

Proof of Lemma 4.4.2. First observe that for all y ∈ {−1, 1}`, and for all x satisfying∨
m(x) = y, the monomial corresponding to I equals⊕

(i,j)∈I

xi,j =
⊕

(i,j)∈I,yi=−1

xi,j.

Let A = {i ∈ [`] : yi = −1}. If A ∩ J = ∅, then

Eµy

⊕
(i,j)∈I

xi,j

 =
∨
i∈J

yi = 1.

Else,
∨
i∈J yi = −1. Also,

Eµy

⊕
(i,j)∈I

xi,j

 = Ex∈{−1,1}(A∩J)×[m]:
∨

(x)=−1|A∩J|

 ⊕
(i,j)∈I,yi=−1

xi,j

 . (4.1)

Note that

Ex∈{−1,1}(A∩J)×[m]

 ⊕
(i,j)∈I,yi=−1

xi,j

 = 0. (4.2)

Denote |A ∩ J | = t. Using Equation (4.2) and a simple counting argument, the

absolute value of the RHS (and thus the LHS) of Equation (4.1) can be bounded
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above as follows (note that we require 1 ≤ t ≤ ` in the following computations).∣∣∣∣∣Eµy
[ ⊕

(i,j)∈I
xi,j

]∣∣∣∣∣ ≤ 2mt − (2m − 1)t

(2m − 1)t

≤ 2mt − (2mt − t2m(t−1))

(2m − 1)t

(Sum of remaining terms in binomial expansion of (2m − 1)t is positive since m > log `)

≤ t · 2mt−m

2mt/2
(since m > log `)

≤ 2`2−m.

Hence, for all y ∈ {−1, 1}`, we have∣∣∣∣∣∣Eµy
⊕

(i,j)∈I

xi,j

− 1

2
− 1

2

∨
i∈J

yi

∣∣∣∣∣∣ ≤ 2`2−m. (4.3)

The next lemma states that g can be approximated well over the OR basis, given

a good approximation for g ◦
∨

over the parity basis.

Lemma 4.4.3. Let `,m be positive integers such that m > log `, and g : {−1, 1}` →
{−1, 1} be any function. Define f = g ◦

∨
m : {−1, 1}m` → {−1, 1},∆ ∈ R, ex ≥

0 ∀x ∈ X, where X denotes the set of all inputs x in {−1, 1}m` such that
∨
m(x) =

−1`, and let p be a real polynomial such that

∀x ∈ {−1, 1}m`, f(x)p(x) ≥ ∆,

∀x ∈ X, f(x)p(x) ≥ ∆ + ex.

Then, there exists an OR polynomial q, of weight at most wt(p), such that

∀y ∈ {−1, 1}`, q(y)g(y) ≥ ∆− wt(p)
(
2` · 2−m

)
,

q(−1`)g(−1`) ≥ ∆ +

∑
x∈X ex

|X|
− wt(p)

(
2` · 2−m

)
.

Proof. Note that for any y ∈ {−1, 1}`,

Eµy [f(x)p(x)] = g(y) · Eµy [p(x)] ≥ ∆ (4.4)
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and

Eµ−1`
[f(x)p(x)] = g(−1`) · Eµ−1`

[p(x)] ≥ ∆ +

∑
x∈X ex

|X|
. (4.5)

Denote the unique multilinear expansion of p by p = v0 +
∑

k vkpk, where pk(x) =

⊕(i,j)∈Ikxi,j. Let Jk denote the projection of Ik on [`]. Define

q = v0 −
∑

k vk
2
−
∑
k

vk
2

∨
i∈Jk

yi.

Note that

wt(q) = wt

(
v0 −

∑
k vk
2
−
∑
k

vk
2

∨
i∈Jk

yi

)
=

∣∣∣∣v0 −
∑

k vk
2

∣∣∣∣+
∑
k

∣∣∣vk
2

∣∣∣ ≤ wt(p).

Thus, using linearity of expectation and Lemma 4.4.2, Equation (4.4) and Equa-

tion (4.5) yield that for all y ∈ {−1, 1}`,

q(y) · g(y) ≥ ∆− wt(p)
(
2` · 2−m

)
and

q(−1`) · g(−1`) ≥ ∆ +

∑
x∈X ex

|X|
− wt(p)

(
2` · 2−m

)
.

Next, we use random restrictions which reduces the degree of the approximating

OR polynomial, at the cost of a small error. In particular, we consider the case when

g = OMB0
l . This represents the dashed implication in Figure 4.3.

Lemma 4.4.4. Let `,m be any positive integers such that m > log `. Let g` =

OMB0
` : {−1, 1}` → {−1, 1}, f = g` ◦

∨
m, and ∆, {ex ≥ 0 : x ∈ X} (where X is

defined as in Lemma 4.4.3), and p be a real polynomial such that

∀x ∈ {−1, 1}m`, f(x)p(x) ≥ ∆,

∀x ∈ X, p(x) ≥ ∆ + ex.
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Then, for any integer d > 0, there exists an OR polynomial r : {−1, 1}`/8 → R, of

degree d and weight at most wt(p), such that

For all y ∈ {−1, 1}`/8, r(y)g`/8(y) ≥ ∆− wt(p)
(
2` · 2−m + 2−(d−1)

)
and r(−1`/8) ≥ ∆ +

∑
x∈X ex

|X|
− wt(p)

(
2` · 2−m + 2−(d−1)

)
.

Proof. Lemma 4.4.3 guarantees the existence of an OR polynomial q, of weight at

most wt(p), such that

∀y ∈ {−1, 1}`, q(y)g`(y) ≥ ∆− wt(p)
(
2` · 2−m

)
(4.6)

and q(−1`)g(−1`) ≥ ∆ +

∑
x∈X ex

|X|
− wt(p)

(
2` · 2−m

)
.

Now, set each of the ` variables to −1 with probability 1/2, and leave it unset with

probability 1/2. Call this random restriction R. Any OR monomial of degree at least

d gets fixed to −1 with probability 1 − 2−d. Thus, by linearity of expectation, the

expected weight of surviving monomials of degree at least d in q is at most wt(p) ·2−d.
Let M |R denote the value of a monomial M after the restriction R. By Markov’s

inequality,

Pr
R

 ∑
M :deg(M |R)≥d

wt(M |R) > wt(p) · 2−d+1

 < 1/2.

Consider `/2 pairs of variables, {(xi, xi+1) : i ∈ [`/2]} (assume w.l.o.g that ` is even).

For any pair, the probability that both of its variables remain unset is 1/4. This

probability is independent over pairs. Thus, by a Chernoff bound, the probability

that at most `/16 pairs remain unset is at most 2−
`

64 .

By a union bound, there exists a setting of variables such that at least `/16 pairs

of variables are left free, and the weight of degree ≥ d monomials in q is at most

wt(p) · 2−d+1. Set the remaining 7`/8 variables to the value −1. After the restriction,

drop the monomials of degree ≥ d from q to obtain r, which is now an OR polynomial

of degree less than d and weight at most wt(p). Note that the function g` hit with

this restriction just becomes g`/8.

Thus, Equation (4.6) yields the following.

For all y ∈ {−1, 1}`/8, r(y)g`/8(y) ≥ ∆− wt(p)
(
2` · 2−m + 2−(d−1)

)
and r(−1`/8) ≥ ∆ +

∑
x∈X ex

|X|
− wt(p)

(
2` · 2−m + 2−(d−1)

)
.
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The following lemma states that approximating OMB0 well by a low weight polyno-

mial p is not possible unless the degree of p is large. This captures the last implication

in Figure 4.3.

Lemma 4.4.5. Suppose p : {−1, 1}n → R is a polynomial of degree d <
√
n/4 and

a > 0, b ∈ R be reals such that p(−1n) ≥ a and OMB0
n(x)p(x) ≥ b for all x ∈ {−1, 1}n.

Define

pmax = max
i∈{0,...,bn/10d2c}

{2ia+
(
3 · 2i − 3

)
b}.

Then, there exists x ∈ {−1, 1}n such that |p(x)| ≥ pmax.

A simple consequence of the above lemma is that the weight of a polynomial p (in

either the OR basis, or the parity basis) satisfying the assumptions of Lemma 4.4.5

is at least pmax. This property of p suffices for our need.

The proof of Lemma 4.4.5 follows an iterative argument, making repeated use

of Lemma 4.2.11, inspired by the arguments of Beigel [Bei94] and Buhrman et

al. [BVdW07].

Remark 4.4.6. We remark here that this strengthens the result of Beigel [Bei94], who

proved that any good approximation by a low degree sign representing polynomial for

OMB0 must have large weight. Our approximating polynomial is not constrained to

be sign representing (b might be negative in Lemma 4.4.5). In fact, it might disagree

in sign with OMB0 on all points but −1n.

We first require the following intermediate claim.

Claim 4.4.7. If a and b are reals such that a > 0, b ∈ R and 2ia + (3 · 2i − 2) b < 0

for some integer i ≥ 0, then 2ja+ (3 · 2j − 3) b < 0 for all integers j > i.

Proof. Note that since a > 0 and 2ia+ (3 · 2i − 2) b < 0, b must be negative. For any

j > i, write 2ja+ (3 · 2j − 3) b = 2j−i (2ia+ (3 · 2i − 2) b) + (2j−i+1 − 3)b < 0.

Proof of Lemma 4.4.5. Divide the n variables into bn/10d2c contiguous blocks of size

10d2 each.

Induction hypothesis: For each i ∈ {0, . . . , bn/10d2c}, there exists an input

xi ∈ {−1, 1}n such that

• xij = −1 for all indices j to the right of the ith block (thus, x0 = (−1)n).
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• The values of xij for indices j to the left of the ith block are set as dictated by

the previous step. That is, xij = xi−1
j for all indices j to the left of the ith block.

• |p(xi)| ≥ 2ia+ (3 · 2i − 3) b.

• The value of p(xi) is negative if i is odd, and positive if i is even.

Clearly, proving this hypothesis proves Lemma 4.4.5. We now prove the induction

hypothesis.

• Base case: Say i = 0. By assumption, p(−1n) ≥ a.

• Inductive step: Say the hypothesis is true for all 0 ≤ j ≤ i − 1 for some

i ≥ 1. In the ith block, set the variables corresponding to the even indices to

−1 if i is odd, and set the odd indexed variables to −1 if i is even. Set the

variables outside the ith block as dictated by the previous step. Assume that

i is odd (the argument for even i follows in a similar fashion, with suitable

sign changes). Denote the free variables by y1, . . . , y5d2 . Define a polynomial

pi : {−1, 1}5d2 → R by pi(y) = Eσ∈S5d2
p̃(σ(y)), where p̃(y) denotes the value of

p on input y1, . . . , y5d2 , and the remaining variables are set as described earlier.

The expectation is over the uniform distribution. Note that pi is a symmetric

polynomial of degree at most d, and satisfies

pi(−15d2

) ≥ 2i−1a+
(
3 · 2i−1 − 3

)
b, pi(y) ≤ −b ∀y 6= −15d2

.

By Lemma 4.2.10, there exists a univariate polynomial p′i such that for all

j ∈ {0} ∪ [5d2],

p′i(j) = pi(y) ∀y such that #1(y) = j.

Thus,

p′i(0) ≥ 2i−1a+
(
3 · 2i−1 − 3

)
b, p′1(j) ≤ −b ∀j ∈ [5d2].

Define p′′i = p′i + b. Thus,

p′′i (0) ≥ 2i−1a+
(
3 · 2i−1 − 2

)
b p′′i (j) ≤ 0 ∀j ∈ [5d2].

If 2i−1a + (3 · 2i−1 − 2) b < 0, then by Claim 4.4.7, the inductive hypothesis is

true for all integers j ≥ i. Thus, assume 2i−1a+ (3 · 2i−1 − 2) b ≥ 0.

By Lemma 4.2.11, there exists a j ∈ [5d2] such that p′′i (j) ≤ −2ia−(3 · 2i − 4) b,

and hence p′i(j) ≤ −2ia − (3 · 2i − 3) b. This implies the existence of an xi in
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{−1, 1}n (with all variables to the right of the ith block still set to −1, and

variables to the left of the ith block as dictated by the previous step) such that

p(xi) < −2ia− (3 · 2i − 3) b.

We are now ready to prove Theorem 4.4.1.

Proof of Theorem 4.4.1. Let p be a polynomial of weight 1, for which (LP2) attains its

optimum. Denote the values taken by the variables at the optimum by ∆OPT, {ξx,OPT :

x ∈ X}. Towards a contradiction, assume OPT ≥ 2−
`1/3

81 .

Lemma 4.4.4 (set m = `1/3 + log `) shows the existence of an OR polynomial r, on

`/8 variables, of degree `1/3 and weight 1, such that

For all y ∈ {−1, 1}`/8, r(y)OMB0
`/8(y) ≥ ∆OPT − 2 · 2−`1/3 − 2 · 2−`1/3

and r(−1`/8) ≥ ∆ +

∑
x∈X ξx,OPT

|X|
− 2 · 2−`1/3 − 2 · 2−`1/3 .

Note that

OPT ≥ 2−
`1/3

81 =⇒ ∆OPT ≥ 2−
`1/3

81 − δ
∑

x∈X ξx,OPT

2n
. (4.7)

r satisfies the assumptions of Lemma 4.4.5 with d = deg(r) = `1/3 <
√
`/32 (since

any OR polynomial of degree d can be represented by a polynomial of degree at most

d), a = ∆OPT +
∑
x∈X ξx,OPT

|X| − 4 · 2−`1/3 , and b = ∆OPT − 4 · 2−`1/3 . a is non-negative

because of the following.

a = ∆OPT +

∑
x∈X ξx,OPT

|X|
− 4 · 2−`1/3 ≥ 2−

`1/3

81 − 4 · 2−`1/3 ≥ 0.

Set k = `1/3/80 for the remaining of this proof. By Lemma 4.4.5, there exists an

x ∈ {−1, 1}`/8 such that

|r(x)| ≥ 2ka+
(
3 · 2k − 3

)
b ≥ ∆OPT(4 · 2k − 3) + 2k

∑
x∈X ξx,OPT

|X|
− 4 · 2−80k(4 · 2k − 3)

≥
(
4 · 2k − 3

)(
2−

`1/3

81 − δ
∑

x∈X ξx,OPT

2n

)
+ 2k

∑
x∈X ξx,OPT

|X|
− 4 · 2−80k(4 · 2k − 3)

(Using Equation 4.7)

≥
(
4 · 2k − 3

) (
2−80k/81 − 4 · 2−80k

)
> 1.

(Since δ = 1/4, and assuming k ≥ 1)
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This yields a contradiction, since r was a polynomial of weight at most 1 (in the OR

basis).

4.5 Class Separations

We are now ready to prove our main theorem and its applications to complexity class

separations.

Theorem 4.5.1 (Restatement of Theorem 4.1.2). Let f = OMB0
` ◦
∨
`1/3+log ` :

{−1, 1}`4/3+` log ` → {−1, 1}. Then, for sufficiently large values of `,

sr(f ◦ XOR) ≥ 2
`1/3

81
−3.

Proof. Let n = `4/3 + ` log `. Theorem 4.4.1 says that the optimum of (LP2) (and

hence (LP1), by duality) is at most 2−
`1/3

81 , when f = OMB0
` ◦
∨
`1/3+log `, δ = 1/4,

and X = {x ∈ {−1, 1}`4/3+` log ` :
∨

(x) = −1`}. We now estimate the size of Xc.

The probability (over the uniform distribution on the inputs) of a particular OR gate

firing a 1 is 1

2`
1/3+log `

. By a union bound, the probability of any OR gate firing a 1

is at most 1

2`
1/3 , hence |Xc| ≤ 2n · 1

2`
1/3 . Plugging these values in Theorem 4.3.1, we

obtain

sr(f ◦ XOR) ≥ 1/4

2−
`1/3

81 + 2−`1/3−2
≥ 2

`1/3

81
−3.

4.5.1 A Separation of Depth-2 Threshold Circuit Classes

We are now ready to prove Theorem 4.1.3, which uses Fn to separate the circuit classes

THR ◦MAJ and THR ◦ THR, resolving an open question posed in [AM05, HP10].

Proof of Theorem 4.1.3. First, we show that Fn is computable by linear sized THR ◦
THR formulas. Let n = 2`4/3 + 2` log ` denote the number of input bits to Fn =

OMB0
` ◦
∨
`1/3+log ` ◦XOR2. By Lemma 4.2.9, Fn can be computed by a THR ◦ AND ◦

XOR2 formula of size 2`4/3 + 2` log `. Hence Fn ∈ THR ◦ ETHR = THR ◦ THR, by

Theorem 4.2.7.

Next, we show a lower bound on the size of any THR ◦MAJ circuit computing Fn.

Suppose OMB0
l ◦
∨
l1/3+log l ◦XOR2 could be represented by a THR◦MAJ circuit of size
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s. By Lemma 4.2.3 and Theorem 4.5.1,

s
(
2`4/3 + 2` log `

)
≥ sr(f) ≥ 2

`1/3

81
−3.

Thus, s = 2Ω(n1/4).

4.5.2 Communication Complexity Class Separations

In this section, we show explicit separations between certain communication com-

plexity classes, resolving an open question posed in [GPW18]. This application of

our main result was brought to our attention by Göös [Göö17]. Precise definitions of

communication complexity classes of interest may be found in Chapter 2.

Theorem 4.5.2. Let f = OMB0
` ◦
∨
`1/3+log ` : {−1, 1}`4/3+` log ` → {−1, 1}, and let

n = `4/3 + ` log ` denote the number of input variables. Then, for sufficiently large

values of n,

UPP(f ◦ XOR) = Ω
(
n1/4

)
.

Proof. It follows from Theorem 4.5.1 and Theorem 2.3.9.

Note that Fn = OMB` ◦ EQ`1/3+log `, where OMB` outputs −1 iff the rightmost bit

of the input set to −1 occurs at an odd index.

It is not hard to see that there is an MA protocol for
∨
` ◦EQ`1/3+log ` of cost

polylogarithmic in `. Using this, and a binary search, we exhibit a PMA upper bound

for Fn under the natural partition of the inputs.
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Protocol 1 PMA protocol for OMB(EQ1, . . . ,EQ`)

if
∨̀
i=1

(EQi) = 1 then Output 1.

end if

start = 1

end = `

mid = d start+end
2
e

while start 6= end do

if
end∨
i=mid

(EQi) = −1 then start← mid

else if
end∨
i=mid

(EQi) = 1 then end← mid− 1

end if

end while

Output −1 iff start is odd.

Hence, we obtain Fn ∈ PMA. Along with Theorem 4.5.2, this yields the following

result.

Theorem 4.5.3.

PMA * UPP.

It is known that PMA ⊆ S2P, and PMA ⊆ BPPNP (see e.g. [GPW18] for refer-

ences for such containments, and an excellent overview on the landscape of two-party

communication complexity classes).

Thus, Theorem 4.5.3 yields

S2P * UPP and BPPNP * UPP.

The first non-inclusion resolves an open question posed in [GPW18]. To the best

of our knowledge, ours is the first explicit total function to witness the second non-

inclusion. We remark here that Bouland et al. [BCH+16] used a partial function to

witness the same separation.

A natural question to ask is whether the class PMA becomes weaker if we restrict

its power. On the one hand it is known that MA ( PP ( UPP and on the other

hand, PNP ( UPP. Thus, Theorem 4.5.3 places the communication complexity class

PMA right at the frontier of our current knowledge.
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4.6 An Upper Bound

In this section, we observe that the function Fn has sign rank 2O(n1/4), showing that

our lower bound in Theorem 4.1.2 is essentially tight for Fn.

Theorem 4.6.1. The function Fn has sign rank 2O(n1/4).

Proof. As noted in the previous section, Fn is expressible as a circuit of the form

THR` ◦ EQ`1/3+log `. Claim 2.3.10 shows that UPP(Fn) = O(n1/4) (since each Equality

is trivially solvable by deterministic protocols of cost `1/3 + log `). By Theorem 2.3.9,

Fn has sign rank 2O(n1/4).

4.7 Signed Monomial Complexity Lower Bounds

In this section, we show how an upper bound on the optimum of LP1 (and LP2)

w.r.t a function f yields signed monomial complexity lower bounds for f . This is

already implied by Theorem 4.3.1, as a sign rank lower bound on f ◦ XOR directly

implies a signed monomial complexity lower bound on f (a simple consequence of

Claim 2.3.10). The use of Theorem 4.3.1, whose proof makes use of the deep result

of Forster [For02], seems an overkill to just prove a lower bound on signed monomial

complexity. In this section, we give a much more direct proof of this fact, entirely

avoiding the use of Forster’s theorem. In the process, we generalize a classical re-

sult of Bruck [Bru90] that gives a sufficient condition for showing lower bounds on

signed monomial complexity. The interested reader may note that our generalization

of Bruck’s theorem is analogous to Razborov and Sherstov’s [RS10] generalization of

Forster’s theorem. Further, our generalized result, Theorem 4.7.2, along with Theo-

rem 4.4.1, will directly imply that there are functions in poly-size THR ◦ OR circuits

that cannot be computed in sub-exponential size by THR ◦ XOR circuits. Such a

result was first proved by Krause and Pudlák [KP98], using a different technique.

Interestingly, Krause and Pudlák expressed the belief that such a separation cannot

be done based on a spectral technique like that of Bruck’s Theorem [Bru90]. Our

argument here shows that this belief was false.

We recall Bruck’s Theorem below.

Theorem 4.7.1 ([Bru90]). Let f : {−1, 1}n → {−1, 1} be any function. If

maxS⊆[n]

∣∣∣f̂(S)
∣∣∣ ≤ ε, then

mon±(f) ≥ 1

ε
.
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The following is our generalization of Theorem 4.7.1.

Theorem 4.7.2. Let f : {−1, 1}n → {−1, 1} be any function, and X any sub-

set of {−1, 1}n. Suppose there exists a distribution µ on {−1, 1}n such that

maxS⊆[n]

∣∣∣f̂µ(S)
∣∣∣ ≤ ε and minx∈X µ(x) ≥ δ. Then,

mon±(f) ≥ δ

ε+ δ · |Xc|
2n

.

Proof. Let p : {−1, 1}n → R be any polynomial which sign represents f . By

Fact 2.2.2,

Ex[f(x)µ(x)p(x)] =
∑
S⊆[n]

f̂µ(S)p̂(S) ≤ max
S⊆[n]

∣∣∣f̂µ(S)
∣∣∣ ·max

S⊆[n]
|p̂(S)| ·mon(p) (4.8)

≤ ε ·max
S⊆[n]

|p̂(S)| ·mon(p). (4.9)

Note that

Ex[f(x)µ(x)p(x)] =
1

2n

∑
x∈X

f(x)µ(x)p(x) +
1

2n

∑
x∈Xc

f(x)µ(x)p(x)

≥ minx∈X µ(x)

2n

 ∑
x∈{−1,1}n

|p(x)| − |Xc| ·max
x∈Xc
|p(x)|


Since p sign represents f

≥ δ ·max
S⊆[n]

|p̂(S)| − δ

2n
· |Xc| · max

x∈{−1,1}n
|p(x)|. Using Lemma 2.2.1

Combining the above and Equation 4.8, we obtain

ε ·max
S⊆[n]

|p̂(S)| ·mon(p) ≥ δ ·max
S⊆[n]

|p̂(S)| − δ

2n
· |Xc| · max

x∈{−1,1}n
|p(x)|

=⇒ ε ·mon(p) ≥ δ − δ

2n
· |Xc| ·

maxx∈{−1,1}n |p(x)|
maxS⊆[n] |p̂(S)|

≥ δ − δ

2n
· |Xc| ·mon(p)

=⇒ mon(p) ≥ δ

ε+ δ · |Xc|
2n

.

The following theorem provides a signed monomial complexity lower bound

against a function in THR ◦ OR.
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Theorem 4.7.3. Let f = OMB0
` ◦
∨
`1/3+log ` : {−1, 1}`4/3+` log ` → {−1, 1}. Then,

mon±(f) ≥ 2
`1/3

81
−3.

Proof. The proof immediately follows from Theorem 4.7.2 and Theorem 4.4.1.

This gives us a function f on n input variables, computable by linear sized THR ◦
AND circuits, such that for large enough n,

mon±(f) ≥ 2Ω(n1/4).

4.8 Lower Bounds Against MODm ◦ XOR

In this section, we analyze the unbounded-error communication complexity of XOR

functions where the outer function is symmetric and its spectrum is periodic.

4.8.1 Introduction

We prove a UPP lower bound against functions of the form MODA
m◦XOR when MODA

m

does not represent a constant function, the parity function, or the complement of

parity. We remark here that, although very recent independent results of Hatami

and Qian [HQ17] and Ada, Fawzi and Kulkarni [AFK17] subsume our results on

UPP complexity of symmetric XOR functions, our methods vary vastly from theirs.

We prove our lower bounds from first principles, and do not make a reduction to

Sherstov’s result [She11b] on symmetric AND functions. Interestingly, our UPP lower

bounds are not obtained via linear programming duality, as opposed to our UPP lower

bounds sketched earlier in this chapter, or even our PP and BPP lower bounds from

earlier chapters.

The starting point of our work is Theorem 4.2.2 which relates the sign rank of a

function f : {0, 1}n×{0, 1}n → R in terms of the minimum value taken by f and the

spectral norm of the communication matrix of f .

Informally, the unbounded-error complexity of f is large if the minimum value

taken by it is not too small, and the spectral norm is small. We then note in

Lemma 2.2.3 that the spectral norm of f ◦ XOR is just a scaling of the maximum

Fourier coefficient of f . It turns out that MOD
{0}
3 has a large principal Fourier coef-
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ficient even though the other coefficients are inverse exponentially small. Thus, one

cannot use Theorem 4.2.2 directly. Next, we prove in Theorem 4.8.6 that if the L1

mass of a subset of the Fourier coefficients of f is sufficiently bounded away from

1, and the remaining coefficients are sufficiently small, we can still obtain a strong

unbounded-error lower bound for f ◦ XOR. We then analyze the Fourier coefficients

of MOD functions, to show that they satisfy the above properties, and this helps us

prove lower bounds for MODA
m ◦ XOR for odd integers m with values upto O(n1/2−ε)

as long as MODA
m does not represent a constant or parity function. This still does

not prove hardness for all MOD functions with period at most O(n1/2−ε) since it can

be proved, for example,

∣∣∣∣M̂OD
{0}
4 (∅)

∣∣∣∣ +

∣∣∣∣M̂OD
{0}
4 ([n])

∣∣∣∣ = 1, thus not allowing us to

use Theorem 4.8.6. To handle this case, we make two crucial observations. One is

that setting a few variables (which we can view as shifting the accepting set by a

small amount) does not change the unbounded-error communication complexity of

MODA
m◦XOR by much. The second is the fact that the unbounded-error complexity of

f ⊕ g is at most the unbounded-error complexity of f plus that of g (Lemma 2.3.12).

Armed with these facts, we use a shifting and XORing trick that enables us to reduce

the modulus of the target MODA
m function to either 4 or a prime without using too

large or too many shifts, or too many XORs. We then use induction on m to finish the

proof of our main theorem regarding unbounded-error communication in this section

(Theorem 4.8.2).

Let us first recall the definition of MOD functions.

Definition 4.8.1 (MOD functions and simple accepting sets). A function f :

{0, 1}n → {−1, 1} is called a MOD function if there exists a positive integer m < n

and an ‘accepting’ set A ⊆ [m] such that

f(x) =


−1

n∑
i=1

xi ≡ k mod m for some k ∈ A

1 otherwise.

We write f = MODA
m. We call an accepting set A simple if MODA

m either represents

the constant 0 function, constant 1 function, or the parity function or its negation.

We also call the corresponding predicate simple in this case.

Our main theorem in this section is as follows.
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Theorem 4.8.2. For any integer m ≥ 3, express m = j2k uniquely, where j is either

odd or 4, and k is a positive integer. Then for any non-simple A,

UPP(MODA
m ◦ XOR) ≥ Ω

(
n− km
jm

)
− 2j log j

m
.

4.8.2 Fourier Analysis of Some Modular Functions

We first closely analyze the Fourier coefficients of functions of the type MODA
m, when

m is odd, using exponential sums.

Claim 4.8.3. For odd m, and any A ⊆ {0, 1, . . . ,m − 1} which is not the full or

empty set, ∣∣∣M̂ODA
m(S)

∣∣∣ ≤
1− 2

m
+ 2m

(
cos
(
π

2m

))n
S = ∅

2m
(
cos
(
π

2m

))n
S 6= ∅.

Zhang [Zha92] showed that for a fixed prime p,

∣∣∣∣M̂ODp

{0}
(∅)
∣∣∣∣ < 1 − 1

p
, and∣∣∣∣M̂ODp

{0}
(S)

∣∣∣∣ = O
(

1
2Ω(n)

)
when S 6= ∅. We show that a similar bound holds for

odd integers m for values up to m = O(n1/2−ε) using a different technique. In partic-

ular, we show that for m = O(n1/2−ε), the principal coefficient is roughly 1− 1
m

, and

all other coefficients are exponentially small
(

1

2n
Ω(1)

)
, for any non simple accepting

set A.

We use the characterization of the MODA
m function in terms of exponential sums

to analyze its Fourier coefficients. Note that exponential sums have been used in

similar contexts in previous papers as well. For example, the reader may refer to

[Bou05, CGPT06, ACFN15]. The notation we use is that from [ACFN15].

Definition 4.8.4. Let ω = e2πi/m be a primitive m-th root of unity. Then, for

x = {0, 1}n, define

EXPa,bm (x1, . . . , xn) = ωa((
∑n
j=1 xj)−b).

Let us now prove Claim 4.8.3.

Proof. First, we use exponential sums to represent a MODA
m function for odd m.

It is easy to check that for any integer k, and any input x = (x1, . . . , xn),

1

m

m−1∑
a=0

EXPa,km (x) =

1 |x| ≡ k (mod m)

0 otherwise.
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Thus, for a general accepting set A ⊆ [m],

∑
k∈A

(
1

m

m−1∑
a=0

EXPa,km (x)

)
=

1 |x| ≡ k (mod m) for some k ∈ A

0 otherwise.

Just by a simple linear transformation from {0, 1} to {−1, 1}, we can express the

MODA
m function in terms of exponential sums as follows.

MODA
m(x) = 1− 2

m

∑
k∈A

(
m−1∑
a=0

EXPa,km (x)

)
=

−1 |x| ≡ k(mod m) for some k ∈ A

1 otherwise.

(4.10)

Let us now look at the Fourier coefficients of MODA
m for odd m, and A not ∅ or [m].

Let us consider 2 cases, the first where S is non-empty, and the second where S is

empty.

1. S 6= ∅.
By Equation (2.1),

M̂ODA
m(S) = Ex∈{0,1}n

[
MODA

m(x)χS(x)
]

= Ex∈{0,1}n [χS(x)]− 2

m

∑
k∈A

m−1∑
a=0

Ex∈{0,1}n
[
EXPa,km (x)χS(x)

]
. (4.11)

where the second equality follows from Equation (4.10) and linearity of expec-

tation. Recall from Definition 4.8.4 that EXPa,bm (x) = ωa((
∑n
j=1 xj)−b). Note that

when a = 0, Ex∈{0,1}n
[
EXP0,b

m (x)χS(x)
]

= Ex∈{0,1}n [χS(x)] = 0 since S 6= ∅. For

a ∈ {1, . . . ,m− 1},

EXPa,km (x)χS(x) = ωa((
∑n
j=1 xj)−k)(−1)

∑
i∈S xi

= ωa
∑n
j=1 xj · ω−ak · (−1)

∑
i∈S xi

= ω−ak · (−ω)a
∑
i∈S xi · ωa

∑
j /∈S xj .

Thus, in Equation (4.11), the first term is 0 since S 6= ∅. The summands with

a = 0 contribute 0 to the expectation. Every other summand in the second

term is of the form Ex∈{0,1}n
[
EXPa,km (x)χS(x)

]
. Since the expectation is over

the uniform distribution which is uniform and independent over the input bits,
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the absolute value of such a term can be bounded as follows.

∣∣Ex∈{0,1}n [EXPa,km (x)χS(x)
]∣∣ ≤ ∣∣Ex∈{0,1}n [ω−ak · (−ω)a

∑
i∈S xi · ωa

∑
j /∈S xj

]∣∣
≤

∣∣∣∣∣∏
i∈S

Exi(−ω)axi

∣∣∣∣∣ ·
∣∣∣∣∣∣
∏
j /∈S

Exjωaxj

∣∣∣∣∣∣
≤
∣∣∣∣(1− ωa

2

)∣∣∣∣|S|∣∣∣∣(1 + ωa

2

)∣∣∣∣n−|S|
≤ max

a∈{1,...,m−1}

{∣∣∣∣1− ωa2

∣∣∣∣n, ∣∣∣∣1 + ωa

2

∣∣∣∣n} .
Since a ∈ {1, . . . ,m − 1} and m is odd, it is fairly straightforward to check

that the value of maxa
{∣∣1−ωa

2

∣∣, ∣∣1+ωa

2

∣∣} is maximized at a = m±1
2

, and

the value attained at the maximum is 1
2

√
(1 + cos(π/m))2 + sin2(π/m) =

1
2

√
2 + 2 cos(π/m) = cos(π/2m). Thus, the above, along with Equation (4.11)

gives us

∣∣∣M̂ODA
m(S)

∣∣∣ ≤ ∣∣Ex∈{0,1}n [χS(x)]
∣∣+

∣∣∣∣∣ 2

m

∑
k∈A

m−1∑
a=0

Ex∈{0,1}n
[
EXPa,km (x)χS(x)

]∣∣∣∣∣
(4.12)

≤ 2(m− 1)2

m
·
(

cos
( π

2m

))n
≤ 2m

(
cos
( π

2m

))n
. (4.13)

2. S = ∅.

One can follow a similar argument as above to analyze the absolute value of

the principal Fourier coefficient. Note that in this case, the first term on the

right hand side of Equation (4.11) is not 0, but 1. Next, note that for a ∈
{1, . . . ,m− 1}, the same bound as in the previous case holds. That is,

∣∣Ex∈{0,1n} [EXPa,km (x)χS(x)
]∣∣ ≤∏

i∈S

Exi(−ω)axi ·
∏
j /∈S

Exjωaxj

≤
∣∣∣∣(1− ωa

2

)∣∣∣∣|S| · ∣∣∣∣(1 + ωa

2

)∣∣∣∣n−|S|
≤
(

cos
( π

2m

))n
.

by the same argument as in the case of S 6= ∅. However, when S = ∅ and a = 0,

we have Ex∈{0,1}n
[
EXPa,bm (x)χ∅(x)

]
= 1 (unlike the case when S 6= ∅, where this

expectation was 0).
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Plugging these values into Equation (4.11) and using the above observations,

we get

∣∣∣M̂ODA
m(∅)

∣∣∣ ≤ ∣∣∣∣∣Ex∈{0,1}n [χ∅(x)]− 2

m

∑
k∈A

Ex∈{0,1}n
[
EXP0,k

m (x)χ∅(x)
]∣∣∣∣∣

+

∣∣∣∣∣ 2

m

∑
k∈A

m−1∑
a=1

Ex∈{0,1}n
[
EXPa,km (x)χ∅(x)

]∣∣∣∣∣ (4.14)

≤
∣∣∣∣1− 2

|A|
m

∣∣∣∣+ 2m
(

cos
( π

2m

))n
(4.15)

≤ 1− 2

m
+ 2m

(
cos
( π

2m

))n
. (since A 6= ∅, [m])

4.8.3 A Lower Bound for MODA
m ◦ XOR

In this section, we show unbounded-error lower bounds for functions of the type

MODA
m ◦ XOR for values of m up to O(n1/2−ε), when A is non-simple. Note that if A

is a simple set, then either MODA
m ◦XOR is a constant or MODA

m represents parity (or

its negation), in which case MODA
m ◦ XOR just represents the parity function (or its

negation), so its communication complexity (even deterministic) is very small. We

prove a new sign rank lower bound criterion for XOR functions. Theorem 2.3.9 tells

us that the log of the sign rank of a communication matrix is essentially equivalent

to the unbounded-error communication complexity of the function.

Let f : {0, 1}n → R, and let A denote the communication matrix of f ◦ XOR. In

order to show a lower bound on the sign rank of f ◦XOR, it suffices to show an upper

bound on the spectral norm of the communication matrix of f ◦ XOR.

Combining Theorem 4.2.2 and Theorem 2.2.3, we get

Corollary 4.8.5. Let f : {0, 1}n → R be any real valued function and let A denote

the communication matrix of f ◦ XOR. Then,

sr(A) ≥ 1

max
S⊆[n]

∣∣∣f̂(S)
∣∣∣ ·min

x
|f(x)|.

Thus, sr(f ◦XOR) = 2Ω(n) for any {−1, 1} valued function with exponentially small

L∞ Fourier norm.
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Note that we cannot use the outer function to be MODp (for a constant p) in

Corollary 4.8.5, since its principal Fourier coefficient is a constant (though sufficiently

bounded away from 1, which we crucially require). The following theorem allows us

to ignore a subset of large Fourier coefficients, as long as their mass is not too large,

which gives us a stronger condition for unbounded-error hardness of XOR functions.

Theorem 4.8.6. For any function f : {0, 1}n → {−1, 1}, and any collection of sets

S ⊆ supp(f̂), if
∑

S∈S

∣∣∣f̂(S)
∣∣∣ ≤ 1−δ, and maxS/∈S

∣∣∣f̂(S)
∣∣∣ ≤ c. Then, sr(f ◦XOR) ≥ δ

c
.

Proof. Define f ′ : {0, 1}n → R by f ′(x) = f(x)−
∑
S∈S

f̂(S)χS(x). Notice

min
x∈{0,1}n

|f ′(x)| ≥ 1−
∑
S∈S

∣∣∣f̂(S)
∣∣∣ ≥ δ.

Also note that ∀S ∈ S, f̂ ′(S) = 0, and ∀S /∈ S, f̂ ′(S) = f̂(S). Thus, max
S⊆[n]

∣∣∣f̂ ′(S)
∣∣∣ ≤ c.

It is easy to see that f ′ sign agrees with f . Thus, the sign rank of these functions

agree by definition. Using Corollary 4.8.5, we have

sr(f ◦ XOR) = sr(f ′ ◦ XOR) ≥ 1

max
S/∈S

∣∣∣f̂ ′(S)
∣∣∣ ·min

x
|f ′(x)| ≥ δ

c
. (4.16)

Let us first recall the Complete Quadratic function, whose Fourier coefficients

were analyzed by Bruck [Bru90]. Define CQ : {0, 1}n → {−1, 1} by

CQ(x) = MOD
{0,1}
4 (x).

Lemma 4.8.7 ([Bru90]). For even n,
∣∣∣ĈQ(S)

∣∣∣ = 2−n/2 for all S ⊆ [n]. For odd n,∣∣∣ĈQ(S)
∣∣∣ ∈ {0, 2−(n−1)/2} for all S ⊆ [n].

For notational convenience, we use the notation U(f) to represent UPP(f ◦ XOR)

in this section. We also use the notation U(MODm) to denote the minimum value of

U(MODA
m) over all non-simple accepting sets A.

Theorem 4.8.8. For m odd, and and A ⊆ {0, 1, . . . ,m− 1} which is not the empty

set or full set,

U(MODA
m) = Ω(n/m2)− 2 log(m).
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Proof. In Theorem 4.8.6, use S = ∅. The values obtained using Claim 4.8.3 are

δ = 2
m
− 2m

(
cos
(
π

2m

))n
, and c = 2m

(
cos
(
π

2m

))n
. Hence,

sr(MODA
m ◦ XOR) ≥

(
2

m
− 2m

(
cos
( π

2m

))n)
· 1

2m
(
cos
(
π

2m

))n
≥ 1

m2
(
cos
(
π

2m

))n − 1.

Using a standard series expansion for cos θ, and the fact that 1 − x ≤ e−x for all

x ∈ R, we get

sr(MODA
m ◦ XOR) ≥ 2Ω(n/m2)

m2
−O(1).

Thus, using the equivalence between sign rank and unbounded-error communication

complexity from Theorem 2.3.9,

U(MODA
m) = Ω(n/m2)− 2 log(m).

This already shows us that the unbounded-error complexity of functions of the

type MODA
m are large when m is odd, and A is not the full set or empty set, for

m up to O(n1/2−ε). Note that one cannot use Theorem 4.8.6 to prove a sign rank

lower bound for MOD
{0}
4 , since

∣∣∣∣M̂OD
{0}
4 (∅)

∣∣∣∣+∣∣∣∣M̂OD
{0}
4 ([n])

∣∣∣∣ = 1, which can be easily

checked. In Claim 4.8.11, we also show hardness for the case when m = 4 and A is

not a simple accepting set.

In the analysis of our main claim (Theorem 4.8.12), we will be concerned with the

size of the input string. For notational convenience, we add a subscript to MODA
m

which denotes the input size. That is,

MODA
m,n : {0, 1}n → {−1, 1},

and we define it exactly the same as in Definition 4.8.1.

We denote the sumset A+ {p} = {a+ p | a ∈ A} (the sums are modulo m, where

m is the period of the MOD function we are interested in) by A+ p for convenience.

Lemma 4.8.9. Suppose MODA′

p,n = MODA
m,n ⊕ MODA+i

m,n for some p < m, and any

integer i. Then,

U(MODA
m,n) ≥

U(MODA′

p,n−m)

2
.
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We recall the following simple yet powerful lemma.

Lemma 4.8.10 (Restatement of Lemma 2.3.12). For any functions f, g : {0, 1}n →
{−1, 1},

U(f ⊕ g) ≤ U(f) + U(g).

Proof of Lemma 4.8.9. Since MODA′

p,n = MODA
m,n⊕MODA+i

m,n , applying Lemma 4.8.10

gives us

U(MODA′

p,n−m) ≤ U(MODA
m,n−m) + U(MODA+i

m,n−m).

The first term on the right is at most U(MODA
m,n) since we can just pad m number

of 0’s each to Alice’s and Bob’s inputs and obtain a protocol (of the same cost) for

MODA
m,n−m given a protocol for MODA

m,n The second term is also at most U(MODA
m,n)

for a similar reason. Pad m − i number of 1’s and i number of 0’s each to Al-

ice’s and Bob’s inputs. It is easy to see that MODA+i
m,n−m(x, y) = −1 if and only if

MODA
m,n(x′, y′) = −1, where x′ and y′ are x and y padded with m − i 1’s and i 0’s

respectively. The lemma now follows.

Let us analyze the unbounded-error communication complexity of MODA
4 ◦ XOR

for various accepting sets A. Note that if A = {0, 2} or {1, 3}, then MODA
4 ◦ XOR is

just parity or its negation respectively. Its communication complexity is a constant

in these cases. Let us look at the other cases.

Claim 4.8.11. Suppose A is not a simple accepting set. Then, U(MODA
4 ) = Ω(n).

Proof. 1. A = {0, 1}. Then, MODA
4 = CQ, and by Lemma 4.8.7,

U(CQ) ≥ n/2.

2. |A| = 2, and MODA
4 does not represent parity (or its negation). Then, this is

clearly a translate of CQ, and

U(MODA
4,n) ≥ U(MOD

{0,1}
4,n−4) ≥ (n− 4)/2.

3. A is non simple and does not fall in the previous 2 cases. Without loss of

generality, may assume |A| = 1 because if it was 3, the complexity of MODA
m is

the same as MODAc

m , and |Ac| = 1. In this case, we can use Lemma 4.8.9 to get

U(MODA
4 ⊕MODA+1

4 ) ≥ U(MODA′

m ).
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for some non simple A′ of size 2. From the previous case, we conclude,

U(MODA
4,n) ≥ U(MODA′

4,n−4) ≥ ((n− 4)/2)− 4

2
= (n− 12)/4.

Recall our main theorem of this section (Theorem 4.8.2), which says that any

function of the type MODA
m ◦ XOR for any non-simple A is hard for UPP protocols,

for values of m up to O(n1/2−ε).

Theorem. For any integer m ≥ 3, express m = j2k uniquely, where j is either odd

or 4, and k is a positive integer. Then for any non-simple A,

U(MODA
m,n) ≥ Ω

(
n− km
jm

)
− 2j log j

m
.

Note that since k is at most log(n), and j is at most m, this gives us an nΩ(1)

lower bound on the unbounded-error communication complexity of MODA
m ◦XOR for

any non-simple accepting set A, for m as large as O(n1/2−ε).

We require the following claim to prove Theorem 4.8.2.

Claim 4.8.12. For any integer m ≥ 3, and for all representations m = j2k for some

j ≥ 3 and a positive integer k, and any non-simple A ⊆ [m], we have

U(MODA
m,n) ≥ U(MODj,n−km)

2k
.

Let us first see how Claim 4.8.12 implies Theorem 4.8.2. Recall that Theorem

4.8.8 gave us

U(MODj,n) = Ω(n/j2)− 2 log(j).

This, along with Claim 4.8.11 and Claim 4.8.12, implies that if m = j2k where j is

either 4 or odd,

U(MODA
m,n) ≥ U(MODj,n−km)

2k
≥

Ω
(

(n−km)
j2

)
− 2 log(j)

m/j
≥ Ω

(
n− km
jm

)
− 2j log j

m

Let us now prove Claim 4.8.12.

Proof. We prove this by induction on m.

1. The base cases are when m is odd. In this case, the hypothesis is trivially true

since m = j2k can only imply j = m, k = 0.
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2. Suppose m = 2p, where p is odd. Let a = xy denote the characteristic vector

of the accepting set A, where x corresponds to the first p elements, and y the

last p elements. We interchangeably use the notation MODA
m and MODa

m when

a is the characteristic vector of the set A. Our assumption is that a is not the

all 0, or all 1, or the parity (negation of parity) vector. Let x ⊕ y denote the

bitwise XOR of x and y.

(a) Suppose x ⊕ y is neither the all 0 or all 1 vector. Since x ⊕ y does not

represent a simple accepting set A, in this case, MODA
m ⊕ MODA+p

m =

MODx⊕y
p . By Lemma 4.8.9,

U(MODA
m,n) ≥

U(MODx⊕y
p,n−m)

2
.

(b) If x⊕ y is the all 0 vector, then x = y, and neither of them are all 0 or all

1. This means MODa
m = MODx

p .

(c) If x⊕ y is the all 1 vector, this means y = xc. Consider A′ = A + 1. One

may verify that A⊕ A′ has characteristic vector a′′ = bb.

i. If b is not the all 0 or all 1 string, MODb
p = MODA

m ⊕MODA+1
m . Use

Lemma 4.8.9 and conclude

U(MODA
m,n) ≥

U(MODb
p,n−m)

2
.

ii. It is easy to check that b can never be the all 0 vector.

iii. Close inspection reveals that if b is the all 1 vector, then the original

vector a must represent parity or its negation, which was not the case

by assumption.

3. Suppose m = 2k, where k is even. Again, let a = xy, where a is the character-

istic vector of accepting set A.

(a) If x⊕ y is neither the all 0 string, all 1 string, nor does it represent parity

(or its negation), then MODA
m ⊕MODA+k

m = MODx⊕y
k . By Lemma 4.8.9,

U(MODA
m,n) ≥

U(MODx⊕y
k,n−m)

2
.

By the induction hypothesis, the claim is true for MODx⊕y
k,n−m. It is easy to

see that this implies the claim for MODA
m,n.
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(b) If x⊕ y is the all 0 vector, then x = y, and neither of them are all 0 or all

1. This means MODa
m is the same as MODx

k.

(c) If x⊕ y is the all 1 vector, this means y = xc. Consider A′ = A + 1. One

may verify that A⊕ A′ has a characteristic vector of the form a′′ = bb.

i. If b is neither the all 0 or all 1 string, nor does it represent parity (or

its negation), then MODb
k = MODA

m⊕MODA+1
m . Use Lemma 4.8.9 and

conclude

U(MODA
m,n) ≥

U(MODb
k,n−m)

2
.

By the induction hypothesis, the theorem is true for MODb
k since b

does not represent the all 0, all 1, or parity (or its negation) string.

The theorem now follows easily for MODA
m,n.

ii. It is easy to check that b can never be the all 0 or all 1 vector.

iii. One may check that b can be the parity (or its negation) vector only

if k ≡ 2(mod 4), and A must have represented CQ (or a translate of

it by at most 2) which we know to be hard. In this case, we obtain

U(MODa
m) = Ω(n).

(d) If x⊕ y represents the parity (or negation of parity) vector, then consider

A′ = A + 2. It is simple to verify that the characteristic vector of A⊕ A′

is of the form zz.

i. If z is not the all 0 or all 1 string, or does not represent parity (or

its negation), then we have MODA
m ⊕MODA+2

m = MODz
k. Use Lemma

4.8.9 to say

U(MODA
m,n) ≥

U(MODz
k,n−m)

2
.

The claim now follows because of the induction hypothesis.

ii. One may verify (by considering cases when k has residue either 0 or 2

modulo 4) that z cannot be the all 0 or all 1 string.

iii. If z represents parity or its negation, then it can be checked that

the only case when this occurs is when A represented a non simple

accepting set, say X, modulo 4. Thus,

U(MODa
m) = U(MODX

4 ) = Ω(n).
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4.8.4 Circuits

In this section, we observe the consequences of Theorem 4.8.2 to circuit lower bounds.

Theorem 4.8.13. Any THR ◦ C circuit computing MODA
m ◦ XOR must have size

s ≥ 2Ω(n−kmjm )− 2j log j
m
−c,

where c is the deterministic communication complexity of C, and m = j2k is the

unique representation of m ≥ 3, where j is either odd or 4, and k is a positive integer.

Proof. It follows directly from Theorem 2.3.9, Claim 2.3.10 and Theorem 4.8.2.

Thus, we obtain that for m up to O(n1/2−ε), and any non-simple A, MODA
m◦XOR is

not in subexponential sized THR◦MAJ. A similar argument shows that MODA
m ◦XOR

is not even in subexponential size THR ◦ SYM, where SYM denotes the class of all

symmetric functions. This is because all symmetric functions have deterministic

communication complexity bounded above by O(log(n)).

This generalizes one particular result of Krause and Pudlák [KP97], and of

Zhang [Zha92] which state that MOD{0}m /∈ THR ◦ PAR, where PAR denotes the class

of all parity gates. This is because we have shown that MODA
m ◦ XOR /∈ THR ◦ SYM,

which implies MODA
m ◦ XOR /∈ THR ◦ PAR. This implies MODA

m /∈ THR ◦ PAR.

4.9 References

The results presented in this chapter are based on joint work with Arkadev Chat-

topadhyay ([CM17c] and Section 6 in [CM17a]).
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Chapter 5

Multi-Party Communication

5.1 Introduction

We first recall the “number-on-forehead” (NOF) model of multi-party communication,

introduced by Chandra, Furst and Lipton [CFL83]. In this model, there are k players

each with an input metaphorically held on their foreheads. Every forehead is visible

to a player except her own. Several communication complexity class separations are

known in the two-player setting. The interested reader may refer to [GPW18] for

an excellent overview of such known separations. Recall that Babai et al. [BFS86]

argue that protocols with polylogarithmic (of input length) communication cost is a

natural notion of efficient protocols, just as polynomial time is a notion of efficient

computation on Turing machines. This correspondence also naturally extends easily

to the NOF model and gives rise to complexity classes such as Pk,BPPk,NPk,PPk,

etc.

We consider the classes PPk and UPPk. The definitions of these classes are analo-

gous to those in the two-party setting as in earlier chapters. We formally define PPk

and UPPk in Section 5.2. The inclusion PPk ⊆ UPPk is straightforward. While a

strict separation between the classes was known for k = 2 ([BVdW07, She08], and

reproved by us in Chapter 3 using different techqniues), the corresponding separation

question for k ≥ 3 players remained unaddressed in the literature.

5.1.1 Our Results

We consider a simple and natural extension of the function defined by Goldmann,

H̊astad and Razborov [GHR92], which we define as follows.
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Definition 5.1.1. Let

P (x, y1, . . . , yk) :=
n−1∑
i=0

n4k−1∑
j=0

2iy1j . . . ykj(xi,2j + xi,2j+1)

where x ∈ {±1}2n24k , yi ∈ {±1}n4k for each i.

We set GHRNk
(
x, y1, . . . , yk

)
:= sgn(2P (x, y1, . . . , yk) + 1), where N = 2n24k.

Our main theorem regarding multi-party communication uses GHRNk to separate

PPk from UPPk for k ≤ δ logN , for any constant δ < 1/4. Note that there is a natural

way to assign the input variables to GHRNk to k+ 1 players as follows: x is Player 1’s

input, and yi is Player (i+ 1)’s input (for i = 1, . . . , k). We recall our main theorem

regarding multi-party communication below.

Theorem 5.1.2. Let Π be any (k + 1)-party probabilistic public-coin protocol com-

puting the GHRNk function with advantage ε > 0. Then,

Cost
(
Π
)

+ log
(
1/ε
)
≥ Ω

(√
N

4k
− logN − k

)
.

Theorem 5.1.2 gives a PPk+1 lower bound for GHRNk . On the other hand, note that

GHRNk is a composition of a linear threshold function with N parities of arity k+1. A

well-known simple fact (essentially Claim 2.3.10) says that every such function has a

UPPk+1 protocol of cost O(logN). This immediately yields the following separation

result.

Corollary 5.1.3. For all 1 ≤ k ≤ δ logN , the GHRNk function is not in PPk+1 but is

in the class UPPk+1, for any constant 0 < δ < 1
4
.

An additional motivation for our work comes from the study of constant-depth

Threshold circuits. We work with the GHR function [GHR92] which is easily seen to

be the composition of a linear threshold function and Parity.

Goldmann et al. [GHR92] showed that although THR ∈ MAJ ◦ MAJ, a simple

function computable by linear-size circuits of the form THR◦PAR2 requires exponential

size to be computed by MAJ ◦ SYM circuits, where SYM denotes gates computing

arbitrary symmetric functions. We strengthen their result to depth-three circuits as

follows.

Theorem 5.1.4. For each k ≥ 2, the function GHRNk can be computed by linear-size

THR ◦PARk+1 circuits, but requires size 2Ω
(√

N

k4k
− logN

k

)
to be computed by depth-three

circuits of the form MAJ ◦ SYM ◦ ANYk.
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Let us remark that Theorem 5.1.4 continues to yield non-trivial bounds as long

as k < δ logN for any constant 0 < δ < 1/4. It is also worth noting that a result of

[GHR92] (MAJ ◦ MAJ = MAJ ◦ THR) immediately yields, from the above theorem,

the following interesting result.

Corollary 5.1.5. The function GHRNk can be computed by linear-size THR ◦PARk+1

circuits but requires size 2Ω
(√

N

k4k
− logN

k

)
to be computed by depth-three circuits of the

form MAJ ◦ THR ◦ ANYk.

We obtain another corollary, demonstrating the existence of a linear threshold

function not computable by a low-weighted signed sum of low F2-degree polynomials

(see Corollary 5.4.4).

5.1.2 Related Work

An anonymous reviewer, and subsequently Sherstov [She16a], pointed out that a more

off-the-shelf Ω(N1/7) separation between PPk and UPPk is implicit in prior work by

combining known results of Sherstov [She11a] and Beigel [Bei94]. The best PPk lower

bound that one would get using functions obtained in this way is Ω(N2/11), using

a more recent result of Thaler [Tha16], which is weaker than the Ω(N1/2) bound

obtained in our Theorem 5.1.2. After our result was published in a technical report,

Sherstov [She16c] showed that by carefully piecing together approximation-theoretic

ideas from his earlier work [She13a] and the result in [She16b], one can obtain an

Ω(N/4k) lower bound for a non-explicit function. This can be made to reproduce

our lower bound, for an explicit function that is similar to ours. We note that while

our result separates PPk from UPPk for up to k ≤ (1/4− ε) logN players, Sherstov’s

separation [She16c] extends to k ≤ (1/2 − ε) logN players. On the other hand, our

method is elementary and self-contained. Using first principles, we prove a strong

PPk lower bound for a function which remained unanalyzed until this result.

The route of combining earlier work of Sherstov [She16b] uses unique-disjointness

as the inner function. With such an inner function, the previous techniques work with

any outer function, like OMB, that has large approximation error for any polynomial

of degree sufficiently smaller than N [Bei94]. This is in contrast to our use of XOR

as the inner function. It is not very difficult to see that OMB ◦XOR has very efficient

PPk protocols for all k ≥ 2. Thus, our argument has to exploit some feature of

the outer function that is not possessed by functions like OMB. We find this an

independently interesting aspect of the technique used in this work. Indeed, there
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has been considerable recent interest in studying the communication complexity of

XOR functions, this thesis hopefully proving to be an example.

In summary, progress on separating communication complexity classes in the NOF

model has been slow. This work is the first one to explicitly address the question of

separating PPk and UPPk for k > 2.

5.1.3 Our Proof Technique and Organization

Recall (cf. Theorem 2.3.8) that PP complexity and discrepancy are equivalent notions

in the 2-party setting. It is not hard to show that a similar equivalence holds in

the multiparty setting as well. Thus, proving a PP lower bound against GHRNk is

equivalent to proving a discrepancy upper bound. To estimate the discrepancy of

GHRNk , we extend ideas from [GHR92] who estimated this in the setting of two players.

The basic intuition can be seen after observing that for a given setting of y1, . . . , yk

the function GHRNk essentially depends on the sign of a plus-minus combination of

Aj’s for 0 ≤ j ≤ n4k − 1, where

Aj :=
1

2

n−1∑
i=0

2i
(
xi,2j + xi,2j+1

)
.

The relevant sign of each Aj depends on the parity of the bits y1,j, . . . , yk,j. Further,

the set of bits in x that each Aj depends on is disjoint from the set of bits that Aj′

depends on, whenever j 6= j′. We sample x such that each Aj is an i.i.d. binomial

distribution centered at 0 with range [−2n + 1, 2n − 1]. Let this distribution be µX .

We sample each yi uniformly at random. We want to ensure that GHRNk , under

this distribution, behaves in a way that leaves the players with little clue about the

outcome unless the relevant sign to be associated with each Aj is determined. The

distribution defined above is a product distribution. Sherstov [She08] showed that

GHR has large discrepancy under product distributions. Thus, as done in [GHR92],

one is forced to sample in a slightly more involved way. First sample y’s uniformly

at random. Then sample x according to µX , conditioned on the fact that P =∑n4k−1
j=0 Ajy1,j · · · yk,j is very close to its mean compared to its standard deviation

(which is as high as 2Ω(n)). Note that the mean of each Aj is 0, which gives us

plenty of room to exploit. This turns out to be the hard distribution but to establish

this requires technical work. This is mainly because analyzing the discrepancy under

non-product distributions is difficult. As a first step to overcome this difficulty, we

follow the ideas of Goldmann et al. [GHR92], and show that it is sufficient to show
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an upper bound on the discrepancy of a function related to the GHR function under

a particular product distribution. Analyzing the discrepancy of this related function

on the obtained product distribution is still non-trivial, and this is the main technical

contribution of our work.

Organization: Section 5.2 develops the basic notions and lemmas. Section 5.3

establishes our main technical result, Theorem 5.3.1, which gives an upper bound on

the k-wise discrepancy of the GHR function. Using this, we prove Theorem 5.1.2 and

Corollary 5.1.3. Section 5.4 derives the circuit consequences of Theorem 5.1.4 and

Corollary 5.1.5. We discuss future directions and open problems in Chapter 7.

5.2 Preliminaries

5.2.1 The NOF Model

In the k-party model of Chandra et al. [CFL83], k players with unlimited compu-

tational power wish to compute a function f : X1 × · · · × Xk → {−1, 1} on some

input x = (x1, . . . , xk). For the purpose of this work, we consider inputs of the form

Xi = {−1, 1}ni . On input x, player i is given (x1, . . . , xi−1, xi+1, . . . , xk), which is why

it is figuratively said that xi is on the i’th player’s forehead. Players communicate

by writing on a blackboard, so every player sees every message. We denote by Dk(f)

the deterministic k-party communication complexity of f , namely the number of bits

exchanged in the best deterministic protocol for f on the worst-case input.

The PPk and UPPk costs of functions are defined analogous to the definitions in

the two-party setting. However, we recall the definitions here for completeness.

A probabilistic protocol Π with access to public (private) randomness computes

f with advantage ε if the probability that Π and f agree is at least 1/2 + ε for all

inputs. The cost of Π is the maximum number of bits it communicates over it’s

internal random choices in the worst case. Let us define Rpub
ε (f) (Rpriv

ε (f)) to be

the cost of the best such protocol. Note that for convenience, we deviate from the

notation defined in [KN97]. Define

PPk(f) := min
ε

[
Rpub
ε (f) + log

(
1

ε

)]
, UPPk(f) := min

ε

[
Rpriv
ε (f)

]
. (5.1)

Note that privateness of the random coins is essential in the definition of UPPk. It

is a simple exercise to show that every function can be computed by unbounded-

error protocols using 2 bits if allowed public coins. Define PPk = {f : PPk(f) =
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polylog(N)} and UPPk = {f : UPPk(f) = polylog(N)}, where N is the maximum

length of an input to a player. Each element in either of these classes refers to a

family of functions, f , one for each input length.

5.2.2 Cylinder Intersections, Discrepancy and the Cube

Norm

Let f : X1×· · ·×Xk → {−1, 1}. A subset Si ⊆ X1×· · ·×Xk is a cylinder in the i’th

direction if membership in Si does not depend on the i’th coordinate. A subset S is

called a cylinder intersection if it can be represented as the intersection of k cylinders,

S = ∩ki=1Si, where Si is a cylinder in the i’th direction.

Definition 5.2.1. Let µ be a distribution on X1 × · · · × Xk. The discrepancy of f

according to µ, disckµ(f) is

max
S

∣∣∣∣Pr
µ

[f(x1, . . . , xk) = 1 ∧ (x1, . . . , xk) ∈ S]

−Pr
µ

[f(x1, . . . , xk) = −1 ∧ (x1, . . . , xk) ∈ S]

∣∣∣∣ (5.2)

where the maximum is taken over all cylinder intersections S.

The k in disckµ denotes the dimension of the underlying cylinder intersections. We

will drop this superscript when it is clear from the context what k is. Let disc(f) =

minµ disckµ(f).

The discrepancy method, due to Babai, Nisan and Szegedy [BNS92], is a powerful

tool that gives lower bounds on randomized communication complexity in terms of

discrepancy. The following lemma can be found, for example, in [KN97].

Lemma 5.2.2. Rpub
ε (f) ≥ log(2ε/disc(f)).

We now recall a useful technique that helps prove upper bounds on the discrepancy

of a function under a product distribution. It is a standard lemma (see, for example,

[Cha09] and [Raz00]).

Lemma 5.2.3. Let f : X×Y1×· · ·×Yk → R, µ = µX×µ1×· · ·×µk be any product

distribution, and let φ : X × Y1 × · · · × Yk → {0, 1} be the characteristic function of
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a cylinder intersection. Then,

|Eµ[f(x, y1, . . . , yk)φ(x, y1, . . . , yk)]| ≤(
Ey0

1 ,y
1
1 ,...,y

0
k,y

1
k

[∣∣Ex∼µXΠa∈{0,1}kf(x, ya1
1 , . . . , y

ak
k )
∣∣])1/2k

where y0
i ∼ µi, y

1
i ∼ µi are sampled independently for each i ∈ [k].

Remark 5.2.4. When f is {−1, 1} valued, the left hand side represents the discrep-

ancy of f over the cylinder intersection φ with respect to the distribution µ. However,

for our purposes, we are required to use the inequality when f is {−1, 1, 0} valued.

5.2.3 The Binomial Distribution

Definition 5.2.5. Let B(N) denote the distribution obtained as the sum of 2N

independent Bernoulli variables, each of which take values 1/2,−1/2 with probability

1/2 each.

A few important things to observe are that B(N) takes only integral values, it is

centered and symmetric around 0, so B(N) is identically distributed to −B(N). Its

range is [−N,N ].

Let us denote Pr[B(N) = 0] by p0. It is a well-known fact that p0 =
(2N
N )

4N
= Θ

(
1

N1/2

)
.

The following lemma tells us that the probability of a binomial distribution taking

any value close to its mean is significantly high.

Lemma 5.2.6. Let W be a binomial random variable distributed according to B(N).

Let p0 denote Pr[W = 0]. Then for all j ∈ [−N,N ],

p0 −O
(

j2

N3/2

)
≤ Pr[W = j] ≤ p0.
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Proof. Note that for |j| ≥ N/2 (in fact, for all |j| = ω(N3/4)), the bound to be proved

is trivial. Thus we assume |j| < N/2.

Pr[W = j − 1]− Pr[W = j] =

[(
2N

N + j − 1

)
−
(

2N

N + j

)]
· 1

22N

=

[
(2N)!

(N + j − 1)!(N − j + 1)!
− (2N)!

(N + j)!(N − j)!

]
· 1

22N

=
(2N)!

(N + j − 1)!(N − j)!
· 2j − 1

(N − j + 1)(N + j)
· 1

22N

=

(
2N

N + j

)
· 2j − 1

N − j + 1
· 1

22N

≤
(

2N

N

)
· 1

22N
· 2j

N − j
.

since the middle binomial coefficient is the maximum. Thus, we have ∀i, |i| ≤ j,

Pr[W = i− 1]− Pr[W = i] ≤
(

2N

N

)
2j

N − j
· 1

22N
.

Since
(2N
N )

4N
= Θ

(
1

N1/2

)
,

Pr[W = 0]− Pr[W = j] ≤
j∑
i=1

|Pr[W = i− 1]− Pr[W = i]| ≤ 2j2

N − j
·O
(

1

N1/2

)
≤ 2 · 2j2

N
·O
(

1

N1/2

)
Since |j| ≤ N/2

≤ O

(
j2

N3/2

)
.

5.3 A Discrepancy Upper Bound for the Multi-

Party GHR Function

In this section, we prove essentially a 2−
√
N/4k upper bound on the discrepancy of the

GHRNk function where the first player gets N input bits. This gives us a 2−n
Ω(1)

upper

bound on the discrepancy if k ≤ ε log(N) for any constant 0 < ε < 1/4.

Goldmann et al. [GHR92] showed that when k = 2, if there is a low cost one-way

protocol for GHRN2 , then it must have low advantage. Sherstov [She08] noted that the

same proof technique can be adapted to prove an upper bound on the discrepancy on

GHRN2 . We generalize this for higher k. In particular, we show
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Theorem 5.3.1. For any k ≥ 1,

disc(GHRNk ) = O

(
(8e)kN1/4

2
√
N/4k · 2k/2

)
,

where GHRNk is defined as in Definition 5.1.1, and N is the maximum number of bits

a player gets (in this case the first player).

Proof of Theorem 5.1.2. It follows directly from Theorem 5.3.1 and Lemma 5.2.2.

Proof of Corollary 5.1.3. From Theorem 5.1.2, it follows that for all 1 ≤ k ≤ δ · log n,

the function GHRNk is not in PPk+1 for any constant 0 < δ < 1/4. The upper bound

follows the same proof as that of Claim 2.3.10.

Recall that N = 2n24k. The proof technique of Theorem 5.3.1 is inspired from

that of Goldmann et al. [GHR92].

Proof of Theorem 5.3.1. Let Aj = 1
2

∑n−1
i=0 2i(xi,2j + xi,2j+1). It is easy to see that Aj

can take any integer value in [−2n + 1, 2n − 1]. Let µX be a distribution on the x’s

that make the Aj’s independent and binomially distributed according to B(2n − 1)

as defined in Definition 5.2.5. Such a distribution exists because each Aj depends

on a disjoint set of variables. Let U be the uniform distribution on {−1, 1}n4k . We

choose a tuple (x, y1, . . . , yk) by first picking yi ∼ U independently for each i, and

then picking x ∼ µX under the condition that |P (x, y1, . . . , yk)| = 2k. Let us define µ

to be the distribution obtained by this sampling procedure.

We will now show an upper bound on the discrepancy of GHRNk under the distribu-

tion µ. Let S denote the characteristic function (0-1 valued) of a cylinder intersection.

By Definition 5.2.1, the discrepancy of GHRNk according to µ is

discµ(GHRNk ) = max
S

∣∣Eµ [GHRNk (x, y1, . . . , yk)S(x, y1, . . . , yk)
]∣∣. (5.3)

The following lemma will enable us to switch to working with a product distribution

on the inputs, for which we have convenient techniques for proving discrepancy upper

bounds via Lemma 5.2.3.

Lemma 5.3.2. For µX ,U as defined above,

Pr
µX×Uk

[|P (x, y1, . . . , yk)| = 2k] ≥ Ω

(
1√

n2(n+2k)/2

)
.

Proof. We will show that for any fixed y1, . . . , yk, if we sample x according to µX ,

then
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P (x, y1, . . . , yk)/2 =
∑n4k−1

j=0 Ajy1j · · · ykj is distributed according to B(n4k(2n − 1)).

Note that Ajy1j · · · ykj is always distributed according to B(2n − 1), no matter what

the values of y1, . . . , yk are. Next, observe that the sum of binomial distributions is a

binomial distribution. This shows that
∑n4k−1

j=0 Ajy1j · · · ykj is distributed according

to B(n4k(2n − 1)).

Hence, by plugging in N = n4k(2n − 1) and j = 2k in Lemma 5.2.6,

Pr
µX×Uk

[|P (x, y1, . . . , yk)| = 2k] ≥ Ω

(
1

(n4k(2n − 1))1/2

)
−O

(
4k

(n4k(2n − 1))3/2

)
= Ω

(
1√

n2(n+2k)/2

)
.

We can discard the second term since it equalsO
(

1
(4k)1/2·(n(2n−1)3/2)

)
, and is dominated

by the first term.

Let us now recall the law of total expectation.

Fact 5.3.3 (Law of total expectation). For any probability space (Ω,F , ν), any event

E ∈ F , and any random variable Z, the following equality holds.

Eν [Z] = Eν [Z | E] · Pr
ν

[E] + Eν [Z | Ē] · (1− Pr
ν

[E]).

Define a function q by

q(x, y1, . . . , yk) =

P (x, y1, . . . , yk)/2
k if |P (x, y1, . . . yk)| = 2k

0 otherwise.

This means that if (x, y1, . . . , yk) is chosen according to the distribution µX × Uk,
then q(x, y1, . . . , yk) = GHRNk (x, y1, . . . , yk) on the support of µ, and 0 otherwise.

For any cylinder intersection S, let Z denote the random variable q(x, y1, . . . , yk) ·
S(x, y1, . . . , yk), let E denote the event |P (x, y1, . . . yk)| = 2k. Using Fact 5.3.3 and

the fact that EµX×Uk [Z | Ē] = 0, we obtain

Eµ[GHR(x, y1, . . . , yk)S(x, y1, . . . , yk)] =
EµX×Uk [q(x, y1, . . . , yk) · S(x, y1, . . . , yk)]

PrµX×Uk [|P (x, y1, . . . yk)| = 2k]
.

(5.4)
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Using Equation (5.3), Lemma 5.3.2 and Equation (5.4), we obtain the following.

discµ(GHRN
k ) ≤ max

S

∣∣EµX×Uk [q(x, y1, . . . , yk)S(x, y1, . . . , yk)]
∣∣ ·O (√n2

n+2k
2

)
(5.5)

where S denotes a cylinder intersection. It therefore suffices to show that for all

cylinder intersections S,

∣∣EµX×Uk [q(x, y1, . . . , yk)S(x, y1, . . . , yk)]
∣∣ ≤ O

(
2−

n+2k
2
−εn
)

(5.6)

for some constant ε > 0 to give us a discrepancy upper bound of 2−n
Ω(1)

. For notational

convenience, we may switch between the notations Ex and Ex∼µX from now on. Now

that we have a product distribution, we can use Lemma 5.2.3,

∣∣EµX×Uk [q(x, y1, . . . , yk)S(x, y1, . . . , yk)]
∣∣

≤

Ey0
1 ,y

1
1 ,...,y

0
k,y

1
k

∣∣∣∣∣∣Ex
 ∏
a1,...,ak∈{0,1}

q(x, ya1
1 , . . . , y

ak
k )

∣∣∣∣∣∣
1/2k

. (5.7)

We will now show an upper bound on the RHS of the above equation by splitting

the outer expectation into two terms, the first of which has low probability. We

will require certain properties of Hadamard matrices to give an upper bound on the

second term. Let β ∈ {0, 1}k. Define 2k subsets of indices as Iβ = {j ∈ [n4k] : ∀i ∈
[k], (y0

i )j = (−1)βi · (y1
i )j}. Note that {Iβ : β ∈ {0, 1}k} forms a partition of the

indices. Since our distributions on y0
i , y

1
i ’s are uniform and independent, each Iβ is

empty with equal probability. An easy counting argument tells us that the probability

of Iβ being empty is
(

2k−1
2k

)n4k

. By a union bound, the probability that any one of

them is empty is at most 2k ·
(

2k−1
2k

)n4k

. We have the following.

Ey0
1 ,y

1
1 ,...,y

0
k,y

1
k

∣∣∣∣∣∣Ex
 ∏
a1,...,ak∈{0,1}

q(x, ya1
1 , . . . , y

ak
k )

∣∣∣∣∣∣
1/2k

≤

(
2k
(

1− 1

2k

)n4k

+ Z

)1/2k

where Z = Ey0
1 ,y

1
1 ,...,y

0
k,y

1
k:∀β,Iβ 6=∅

∣∣∣Ex∏a1,...,ak∈{0,1} q(x, y
a1
1 , . . . , y

ak
k )
∣∣∣
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Claim 5.3.4. For all y0
1, . . . , y

0
k, y

1
1, . . . , y

1
k such that Iβ is non-empty for each β ∈

{0, 1}k, we have∣∣∣∣∣∣Ex
 ∏
a1,...,ak∈{0,1}

q(x, ya1
1 , . . . , y

ak
k )

∣∣∣∣∣∣ ≤ O

(
2k log(e)2k · 22k 1

(2n/2)2k−1
· 2(k+1)2k+1

23n/2

)

Let us assume the claim to be true for now. We have from Equation (5.5) that

discµ(GHRNk ) ≤
∣∣EµX×Uk [q(x, y1, . . . , yk)S(x, y1, . . . , yk)]

∣∣ O (√n2
n+2k

2

)
≤

(
2k
(

1− 1

2k

)n4k

+O

(
2k log(e)2k · 22k 1

(2n/2)2k−1
· 2(k+1)2k+1

23n/2

))1/2k

·O
(√

n2
n+2k

2

)
≤

[
2k/2

k

(
1− 1

2k

)n2k

+O

(
(4e)k

(2
n
2 )1− 1

2k · 2
3n
2
· 1

2k

)]
O
(√

n2
n+2k

2

)
≤ O

((
e−1/2k

)n2k

· 2n/2+k+k/2k ·
√
n+

(8e)k
√
n

2( 3n
2
−n

2
)· 1

2k

)
Using the fact that

(
1− 1

γ

)
< e−1/γ

= O

(
e−n · 2n/2+k+k/2k ·

√
n+

(8e)k
√
n

2n/2k

)
= O

(
(8e)k

√
n

2n/2k

)
Assuming k < n/3

= O

(
(8e)kN1/4

2
√
N/4k · 2k/2

)
Recall that N = 2n24k

which proves Theorem 5.3.1.

Now it only remains to prove Claim 5.3.4.

5.3.1 Proof of Claim 5.3.4

Recall that we need to show the following. For all y0
1, . . . , y

0
k, y

1
1, . . . , y

1
k such that Iβ

is non-empty for each β, we want∣∣∣∣∣∣Ex
 ∏
a1,...,ak∈{0,1}

q(x, ya1
1 , . . . , y

ak
k )

∣∣∣∣∣∣ ≤ O

(
2k log(e)2k · 22k 1

(2n/2)2k−1
· 2(k+1)2k+1

23n/2

)
.
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Fix any such y0
1, . . . , y

0
k, y

1
1, . . . , y

1
k. Note that the LHS of the above equation is∣∣∣∣∣∣Pr

x

 ∏
a1,...,ak∈{0,1}

q(x, ya1
1 , . . . , y

ak
k ) = 1

− Pr
x

 ∏
a1,...,ak∈{0,1}

q(x, ya1
1 , . . . , y

ak
k ) = −1

∣∣∣∣∣∣.
For convenience, for all a ∈ {0, 1}k let us denote P (x, ya1

1 , . . . , y
ak
k ) by Pa and let Sa

denote Pa/2. By the definition of q, we have∣∣∣∣∣∣Ex
 ∏
a∈{0,1}k

q(x, ya1
1 , . . . , y

ak
k )

∣∣∣∣∣∣ =

∣∣∣∣∣∣Pr
x

 ∏
a∈{0,1}k

Pa
2k

= 1

− Pr
x

 ∏
a∈{0,1}k

Pa
2k

= −1

∣∣∣∣∣∣
=

∣∣∣∣∣∣Pr
x

 ∏
a∈{0,1}k

Sa = 2(k−1)2k

− Pr
x

 ∏
a∈{0,1}k

Sa = −2(k−1)2k

∣∣∣∣∣∣. (5.8)

Let Wβ =
∑

j∈Iβ Aj(y
0
1)j . . . (y

0
k)j. It will be useful to note here that Wβ only takes

integral values. We will use this fact crucially later. Let pk denote the 2k× 1 column

vector whose elements are indexed by a = (a1, . . . , ak) ∈ {0, 1}k, and the a’th element

of pk is P (x, ya1
1 , . . . , y

ak
k ).

Similarly define column vectors sk (wk, respectively) whose a’th entries are

Sa (Wa, respectively) for all a ∈ {0, 1}k. Although pk, sk and wk depend on

x, y0
1, . . . , y

0
k, y

1
1, . . . , y

1
k, we do not make this dependence explicit in the following

discussion in order to avoid clutter.

Claim 5.3.5. The following holds true for all k, and all x, y0
1, . . . , y

0
k, y

1
1, . . . , y

1
k.

pk = 2sk = 2Hk ·wk (5.9)

where Hk is a 2k × 2k Hadamard matrix defined1 as Hk =

[
Hk−1 Hk−1

Hk−1 −Hk−1

]
and

H0 =
[
1
]
.

Let us first state a well-known property of Hk.

Fact 5.3.6. Let Hk be as defined above. Then, (Hk)ij = (−1)〈i,j〉 for all i, j ∈ {0, 1}k.

In other words, Hk is the communication matrix of IP. Let us now prove

Claim 5.3.5.

1This is the Sylvester construction of Hadamard matrices.
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Proof of Claim 5.3.5. Let a ∈ {0, 1}k, Pa = 2
∑n4k

j=1 Aj(y
a1
1 )j · · · (yakk )j and Wβ =∑

j∈Iβ Aj(y
0
1)j · · · (y0

k)j. Say j ∈ Iβ where β ∈ {0, 1}k. Note that (yaii )j = −1 · (y0
i )j

iff ai = 1, βi = 1. Hence, we have (ya1
1 )j · · · (yakk )j = (−1)(

∑
i ai·βi)(y0

1)j · · · (y0
k)j =

(−1)〈a,β〉(y0
1)j · · · (y0

k)j.

Pa = 2
n4k∑
j=1

Aj(y
a1
1 )j · · · (yakk )j = 2

 ∑
β∈{0,1}k

∑
j∈Iβ

(−1)〈a,β〉Aj(y
0
1)j · · · (y

0
k)j


= 2

 ∑
β∈{0,1}k

(−1)〈a,β〉Wβ


= 2(Hk)a ·wk

where (Hk)a denotes the a’th row of Hk. Thus, pk = 2sk = 2Hk ·wk.

On Integral Solutions to Hadamard Constraints

In the remainder of this section, we shall refer to an integral assignment to wk

as a valid integral assignment if it satisfies Equation (5.9) for some setting of

x, y0
1, . . . , y

0
k, y

1
1, . . . , y

1
k. The conditions on sk will be explicitly stated in each usage.

First, we prove that the number of valid integral assignments to wk satisfying∏
a∈{0,1}k Sa = 2(k−1)2k is equal to the number of valid integral assignments to wk

satisfying
∏

a∈{0,1}k Sa = −2(k−1)2k . Moreover, we show that the total number of such

valid integral assignments is small, and the values of |Wa| are not too large in any

such valid assignment. Recall from Equation (5.8) that for all y0
1, . . . , y

0
k, y

1
1, . . . , y

1
k

such that Iβ is non-empty for each β, we have∣∣∣∣∣∣Ex
 ∏
a∈{0,1}k

q(x, ya1
1 , . . . , y

ak
k )

∣∣∣∣∣∣ =

∣∣∣Prx

[∏
a∈{0,1}k Sa = 2(k−1)2k

]
− Prx

[∏
a∈{0,1}k Sa = −2(k−1)2k

]∣∣∣.
Thus, we can pair valid “positive” and “negative” assignments. Higher-order terms in

the difference
∣∣∣Prx

[∏
a∈{0,1}k Sa = 2(k−1)2k

]
− Prx

[∏
a∈{0,1}k Sa = −2(k−1)2k

]∣∣∣ cancel

out. We require the following well-known property of Hadamard matrices.

Fact 5.3.7. Let H be an N × N Hadamard matrix. Then, H is invertible, and

H−1 = 1
N

H.
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Claim 5.3.8. The number of valid integral assignments to wk that satisfy∏
a∈{0,1}k Sa = +2(k−1)2k equals the number of valid integral assignments that

satisfy
∏

a∈{0,1}k Sa = −2(k−1)2k .

Proof. The constraints we have are Hk · wk = sk. Since Wa is integral for all a,

and Hk is a ±1 matrix, this implies that the Sa’s are integral as well. Thus, using

Fact 5.3.7 we get 1
2k

Hk · sk = wk, or Hk · sk
2k

= wk. Let us consider two cases,

one where ∀a ∈ {0, 1}k,
∣∣Sa

2k

∣∣ = 1/2, and another where there exists an a such that∣∣Sa
2k

∣∣ 6= 1/2.

• Let us assume ∀a,
∣∣Sa

2k

∣∣ = 1/2. We show something slightly stronger, namely that

every setting of each Sa
2k

to ±1/2 gives us a valid assignment to the Wa’s. Since

Hk is a ±1 matrix of even dimension, the parity of the number of appearances of

+1/2 equals the parity of number of appearances of −1/2 in the sum (Hk)R · sk2k
,

where (Hk)R is the R’th row of Hk. This holds for every row R. Thus, WR is

always an integer. This means the number of valid positive assignments equals

the number of valid negative assignments in this case.

• The absolute value of Sa must equal a power of 2 for each a since the product

of them is a power of 2. If there exists an Sa whose value is not ±2k−1, then

there must exist an Sb (consider the last such one) which is a multiple of 2k

since
∏

a∈{0,1}k Sa = ±2(k−1)2k . Since Sb/2
k is an integer, and we had a valid

integral assignment to wk, flipping the sign of Sb can change the value of any

Wc to Wc±2 ·Sb/2k, which remains an integer. This is a bijection between valid

positive and negative assignments.

Lemma 5.3.9. The number of valid integral assignments to wk satisfying∏
a∈{0,1}k Sa = ±2(k−1)2k is at most 2k log(e)2k .

We use the following standard fact about binomial coefficients.

Fact 5.3.10. For all n ∈ N and for all k ∈ [n],
(
n
k

)
≤
(
n·e
k

)k
.

Proof of Lemma 5.3.9. Suppose
∏

a∈{0,1}k Sa = ±2(k−1)2k . This means we have to

distribute (k − 1)2k powers of 2 among 2kSa’s (which are all integers). The total

number of ways to do this equals the number of non-negative integer solutions to

m1 + · · ·+m2k = (k − 1)2k, which equals
(
k2k−1

(k−1)2k

)
. Note that

(
k2k−1

(k−1)2k

)
=
(

k2k

(k−1)2k

)
≤(

k2k·e
(k−1)2k

)(k−1)2k

, where the last inequality follows by Fact 5.3.10. Now we use the fact
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that 1 + x ≤ ex and conclude that
(

k2k·e
(k−1)2k

)(k−1)2k

is bounded above by ek2k , which

equals 2k log(e)2k . Each of these can give at most one integral assignment to the Wa’s

because the system of constraints is linearly independent.

We now state an upper bound on the value of |Wa| in every integral assignment.

Lemma 5.3.11. For all a ∈ {0, 1}k, |Wa| ≤ 2(k+1)2k for any valid integral assignment

to wk satisfying
∏

a∈{0,1}k Sa = ±2(k−1)2k .

Proof. First note that for each a, |Wa| ≤
∑

a∈{0,1}k
|Sa|
2k

since Hk · sk = wk. We show

that
∑

a∈{0,1}k |Sa| is at most 2k2k . Suppose not. By a simple averaging argument,

there must be a b such that |Sb| > 2k2k

2k
, which is 2k(2k−1), which is at least 2(k−1)2k

if k ≥ 1. But this is not possible since
∏

a∈{0,1}k Sa = ±2(k−1)2k and the Sa’s are

integers.

Using Properties of the Binomial Distribution

Recall from Equation (5.8) that for all y0
1, . . . , y

0
k, y

1
1, . . . , y

1
k for which Iβ is

non-empty for each β, we want to show an upper bound on the quantity∣∣∣Prx

[∏
a∈{0,1}k Sa = 2(k−1)2k

]
− Prx

[∏
a∈{0,1}k Sa = −2(k−1)2k

]∣∣∣. Recall that we

defined Wβ =
∑

j∈Iβ Aj(y
0
1)j . . . (y

0
k)j. For any β ∈ {0, 1}k, note that Wβ is always

distributed according to B(cβ(2n − 1)), where cβ = |Iβ| ≥ 1. We can prove this in

a manner similar to that in the proof of Lemma 5.3.2. In Claim 5.3.8, we showed

that the number of valid integral assignments to wk such that
∏

a∈{0,1}k Sa = 2(k−1)2k

equals the number of integral assignments such that
∏

a∈{0,1}k Sa = −2(k−1)2k . Note

that if the assignment to wk is not integral, then it has probability 0, since for

each a,Wa takes only integral values. Let us call an assignment to wk positive

if the corresponding value of
∏

a∈{0,1}k Sa = 2(k−1)2k , and negative if the value of∏
a∈{0,1}k Sa = −2(k−1)2k . Arbitrarily form a matching, denoted by M, between the

positive and negative assignments. We will bound the difference of probabilities of

each match.∣∣∣Prx

[∏
a∈{0,1}k Sa = 2(k−1)2k

]
− Prx

[∏
a∈{0,1}k Sa = −2(k−1)2k

]∣∣∣
≤

∑
(w,w′)∈M

∣∣∣Pr
x

[wk = w]− Pr
x

[wk = w′]
∣∣∣.

where w = (wa)a∈{0,1}k is a valid positive assignment and w′ = (w′a)a∈{0,1}k is the

valid negative assignment that is the unique match of w according to M. The term
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Prx[wk = w] is equal to Prx[
∧
a∈{0,1}kWa = wa]. In Lemma 5.3.11 we showed that

for each β, the absolute value of Wβ in any integral assignment can be at most

2(k+1)2k . Each Wβ is distributed according to B(cβ(2n − 1)), cβ > 0, since ∀β ∈
{0, 1}k, |Iβ| > 0. For a particular positive assignment w, negative assignment w′ and

any y0
1, . . . , y

0
k, y

1
1, . . . , y

1
k such that Iβ is non-empty for each β,

∣∣∣Pr
x

[wk = w]− Pr
x

[wk = w′]
∣∣∣ =

∣∣∣∣∣∣Pr

 ∧
a∈{0,1}k

Wa = wa

− Pr

 ∧
a∈{0,1}k

Wa = w′a

∣∣∣∣∣∣.
By plugging in N = cβ(2n − 1) and j = 2(k+1)2k in Lemma 5.2.6, we obtain p0 ≥
Prx[Wβ = wβ] ≥ p0 − O

(
2(k+1)2k+1

23n/2

)
, where p0 = Pr[Wβ = 0] = O

(
1

2n/2

)
. For

convenience in calculations, let us say Prx[Wβ = wβ] ∈
(
p0 ±O

(
2(k+1)2k+1

23n/2

))
. Recall

that the Wβ’s are independent of each other since they depend on disjoint variables.

Thus,∣∣∣Pr[
∧
a∈{0,1}kWa = wa]− Pr[

∧
a∈{0,1}kWa = w′a]

∣∣∣
≤

∣∣∣∣∣∣
(
p0 ±O

(
2(k+1)2k+1

23n/2

))2k

−

(
p0 ±O

(
2(k+1)2k+1

23n/2

))2k
∣∣∣∣∣∣ ≤ 2 · 22k

(2n/2)2k−1
· 2(k+1)2k+1

23n/2
.

The last inequality holds because the highest-order term after binomially expanding

both terms is (p0)2k , which cancel each other. Note that the sum of the binomial

coefficients is 22k , and each term after the first is at most 1

(2n/2)2k−1
· 2(k+1)2k+1

23n/2 . Thus,

the sum of the remaining terms can be bounded above by 22k 1

(2n/2)2k−1
· 2(k+1)2k+1

23n/2 . By

Lemma 5.3.9, the number of assignments is at most 2k log(e)2k . Thus,∣∣∣Prx

[∏
a∈{0,1}k Sa = 2(k−1)2k

]
− Prx

[∏
a∈{0,1}k Sa = −2(k−1)2k

]∣∣∣
≤

∑
(w,w′)∈M

∣∣∣Pr
x

[wk = w]− Pr
x

[wk = w′]
∣∣∣ ≤ 2k log(e)2k · 22k 1

(2n/2)2k−1
· 2(k+1)2k+1

23n/2

which proves Claim 5.3.4. Using Equation (5.5), this proves Theorem 5.3.1.

5.4 Circuit Lower Bounds

In this section, we will show how we obtain lower bounds on the size of depth-3

circuits of the type MAJ ◦ THR ◦ ANYk computing the GHRNk function. Recall that
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GHRNk can be computed by linear-size THR ◦ PARk+1 circuits. First let us state the

results that were known prior to this work.

Lemma 5.4.1 (Folklore). Any function f computable by size s circuits of the type

SYM◦ANYk has a deterministic simultaneous (k+1)-player protocol of costO(k log(s))

for any partitioning of the input bits.

Proof. Since each of the bottom layer gates has fan-in at most k, there must exist

a player who sees all the inputs to it. The protocol decides beforehand which gate

‘belongs’ to which player. All players simultaneously broadcast their contribution to

the top SYM gate using at most log(s) bits each.

A consequence of this is an upper bound for randomized protocols for depth-3

circuits, which may be found in [Cha07] for example, and is stated below without

proof.

Lemma 5.4.2 (Folklore). Given any function f computable by size s circuits of the

type MAJ ◦ SYM ◦ ANYk, and any partition of the input bits, there exists a public

coin (k+1)-player randomized protocol computing f with advantage Ω(1/s) and cost

O(k log(s)). In other words, PPk+1(f) = O(k log s).

A similar upper bound is as follows.

Lemma 5.4.3 (Folklore). Given any function f computable by size s circuits of the

type MAJ ◦ XOR ◦ ANYk ◦ XOR and for any partition of the input bits, PPk+1(f) =

O(k log s).

Proof. The proof follows along the same lines as that of Lemma 5.4.2 along with the

observation that each XOR ◦ ANYk ◦ XOR sub-circuit has F2-degree at most k.

Let us now prove Theorem 5.1.4.

Proof. Suppose GHRNk could be computed by MAJ ◦ SYM ◦ ANYk circuits of size

s. Using the protocol mentioned in Lemma 5.4.2, the cost of the protocol is

O(k log(s)) and advantage Ω(1/s). Using Theorem 5.1.2, O(k log(s) + log(s)) ≥
Ω
(√

N
4k
− log(N)− k

)
, which gives log(s) ≥ Ω

(√
N

k4k
− log(N)

k
− 1
)

. Thus, s ≥

2
Ω
(√

N

k4k
− log(N)

k
−1
)
≥ 2

Ω
(√

N

k4k
− log(N)

k

)
.

By definition, polynomial-size MAJ◦MAJ circuits can be simulated by polynomial-

size MAJ ◦ SYM circuits. Also, Goldmann et al. [GHR92] (Theorem 26) showed that

MAJ◦THR circuits can be simulated by MAJ◦MAJ circuits with a polynomial blowup.
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More precisely, a MAJ◦THR circuit of size s can be simulated by a MAJ◦MAJ circuit

of size sα ·Nβ for some constants α, β where N is the input size. Hence, Corollary 5.1.5

follows by a similar proof as that of Lemma 5.4.2.

The communication lower bound of Goldmann et al. [GHR92] also implies that

THR /∈ MAJ◦XOR. This result of theirs may be interpreted as following: there exists

a linear threshold function that cannot be represented by a low-weight signed sum

of polynomials of F2-degree 1. As a corollary of our main result in this chapter, we

generalize their result and show that there exists a linear threshold function that can-

not be represented as a low-weight signed sum of polynomials of F2-degree O(logN).

Formally, we obtain the following.

Corollary 5.4.4. There exists a constant c and a linear threshold function f :

{−1, 1}N → {−1, 1} such that f cannot be computed by polynomial sized MAJ ◦
XOR ◦ ANYk circuits for any k < c logN .

Proof. By definition, GHRNk can be expressed as f ◦ XOR, where f ∈ THR. Thus,

if f had a polynomial sized representation of the form MAJ ◦ XOR ◦ ANYk, then

GHRNk ∈ MAJ ◦ XOR ◦ ANYk ◦ XOR. By Lemma 5.4.3, this implies PPk+1(GHRNk )

would be polylogarithmic in N , which is a contradiction by Corollary 5.1.3.

5.5 References

The results presented in this chapter are based on joint work with Arkadev Chat-

topadhyay [CM16].
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Chapter 6

Linear Decision Lists

In this chapter, we take a short digression and study the power of linear decision lists,

which are decision lists where the queries are linear threshold functions.

As mentioned in Section 4.5.2, a natural program arising from our work is to show

lower bounds against the class PMA. Recall that Fn could be expressed as a decision

list of exact thresholds (in particular, a decision list of Equalities), which are easy to

compute in PMA. Thus, a plausibly easier first step is to show lower bounds against

decision lists of exact threshold functions.

A similar model to consider is the class of decision lists of linear threshold func-

tions, which we denote by linear decision lists. A simple observation is that this class

is a sub-class of THR ◦ THR. Turán and Vatan [TV97] showed that decision lists

of linear threshold functions must have large monochromatic rectangles, and thus

require exponential size to compute IP. An open question they posed was how the

power of linear decision lists compares with MAJ ◦MAJ. Buhrman et al. [BVdW07]

and Sherstov [She11a] independently exhibited a function, efficiently computable by

linear decision lists, but not by MAJ ◦MAJ.

Towards the goal of proving lower bounds against decision lists of exact threshold

functions, we exploit the aforementioned lower bound technique for linear decision

lists due to Turán and Vatan to show that a simple function in MAJ ◦MAJ requires

exponential sized linear decision lists to compute it. This completely answers the

open question posed by Turán and Vatan.

6.1 Introduction

Decision lists are a widely studied model of computation, first introduced by Rivest

[Riv87]. Recall that a decision list L of size ` computing a Boolean function f ∈ Bn is
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a sequence of `− 1 instructions of the form if fi(x) = ai then output bi and stop,

followed by the instruction output ¬b`−1 and stop. Here Bn denotes the set of all

Boolean functions in n variables, each fi ∈ Bn is called a query function, and ai and

bi are Boolean constants. If the functions fi all belong to a function class S ⊆ Bn,

then L is said to be an S-decision list.

Krause [Kra06] claimed that there are functions with small representation as AND-

decision lists, but requiring exponential size THR ◦XOR circuits. On the other hand,

Impagliazzo and Williams [IW10] showed that a certain condition is sufficient to prove

lower bounds against decision lists of rectangles.

Lower bounds against linear decision lists (and even against bounded-rank linear

decision trees, a natural generalization) for IP were proved by Gröger, Turán and

Vatan, in [GT91, TV97]. Subsequently, in [UT11, UT15], Uchizawa and Takimoto

observed that the class of linear decision lists and linear decision trees when the

weights of the linear threshold queries are bounded by a polynomial in the input

length, cannot compute functions outside UPP, by noting that functions in this class

can be efficiently compute in THR ◦MAJ.

We observe that the lower bound argument in [TV97] shows that functions ef-

ficiently computable by linear decision lists (with no restrictions on the weights of

the queried linear threshold functions) must have large monochromatic rectangles.

We then use this fact to establish a lower bound for a seemingly simple function, in

MAJ ◦MAJ, thus completely resolving the open question posed by Turán and Vatan.

Our main theorem regarding linear decision lists is as follows.

Theorem 6.1.1. There exists a function that can be computed by polynomial sized

MAJ ◦ MAJ circuits, but any linear decision list computing it requires exponential

size.

We prove this by showing that MAJ ◦ XOR2 cannot be computed efficiently by

LDL’s.

Theorem 6.1.2. Any linear decision list computing MAJn ◦ XOR2 must have size

2Ω(n).

It is not hard to see that MAJ ◦XOR can be simulated by linear sized MAJ ◦MAJ

circuits with only a linear blow-up in size. This immediately yields Theorem 6.1.1.

Impagliazzo and Williams [IW10] demonstrated a function, implicitly computable

by polynomial sized MAJ ◦MAJ circuits, which cannot be computed by polynomial

sized rectangle-decision lists. We observe that Turán and Vatan’s lower bound tech-

nique against linear decision lists also applies to this function. Thus, their function
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also separates linear decision lists from MAJ ◦ MAJ. We elaborate on this in Sec-

tion 6.4.

We now formally define some notions of interest in this chapter.

Definition 6.1.3 (Monochromatic squares). Let F : {0, 1}n×{0, 1}n → {0, 1} be any

function. A monochromatic b-square of size s is a tuple (X, Y ), where X, Y ⊆ {0, 1}n

such that |X| = |Y | = s, and F (x, y) = b for every (x, y) ∈ X × Y . We say that

(X, Y ) is a monochromatic square if it is a monochromatic 0-square or 1-square.

Definition 6.1.4 (Hamming distance). The (Hamming) distance between any two

strings x, y ∈ {0, 1}n, denoted d(x, y), is defined as d(x, y) , |{i : xi 6= yi}|. The

Hamming distance between any two sets A,B ⊆ {0, 1}n, denoted d(A,B), is the

minimum pairwise distance; d(A,B) = minx∈A,y∈B d(x, y).

Definition 6.1.5 (Hamming balls). Let c ∈ {0, 1}n and k ∈ {0, 1, . . . , n}. A set

A ⊆ {0, 1}n is called a Hamming ball with centre c and radius k if

{s ∈ {0, 1}n | d(s, c) ≤ k − 1} ⊂ A ⊆ {s ∈ {0, 1}n | d(s, c) ≤ k}

For a set A ⊆ {0, 1}n, the boundary of A is the set {s ∈ {0, 1}n|d(s, A) = 1}. In

[Har66], Harper proved a isoperimetry result: among all sets of a given size, Hamming

balls have the smallest boundary set size. A simplified proof was given by Frankl and

Füredi [FF81], who also stated the theorem in the equivalent form we mention below.

See also the presentation in [Bol86]).

Theorem 6.1.6 (Harper’s Theorem). Let A,B ⊆ {0, 1}n be non-empty sets. Then,

we can find a Hamming ball A0 with centre 0n and a Hamming ball B0 with centre

1n such that |A0| = |A|, |B0| = B, and d(A0, B0) ≥ d(A,B).

Definition 6.1.7 (Binary Entropy). The binary entropy function H : [0, 1] → [0, 1]

is defined as follows: H(p) = −p log p− (1− p) log(1− p).

Fact 6.1.8. H(1/4) < 0.82.

6.2 Linear Decision Lists Contain Large Monochro-

matic Squares

In this section, we observe that the argument of Turán and Vatan from [TV97] in fact

shows that all functions computable by small sized linear decision lists must contain
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large monochromatic rectangles. For completeness, we first reproduce the following

lemma and proof.

Lemma 6.2.1 (Lemma 2 in [TV97]). Let f be a linear threshold function over the

variables x1, . . . , xn, y1, . . . , yn. Let X, Y ⊆ {0, 1}n, |X| = |Y | = m, and v ∈ [m].

Then, exactly one of the following is true.

1. There is a monochromatic 1-square (X ′, Y ′) of size v within X × Y .

(That is, X ′ ⊆ X and Y ′ ⊆ Y .)

2. There is a monochromatic 0-square (X ′, Y ′) of size m− v + 1 within X × Y .

Proof. Let M be the submatrix of Mf restricted to X×Y . Let the threshold function

f be given by sgn(a+〈α·x〉+〈β ·y〉). Reorder the rows and columns of A in decreasing

order of a+〈α ·x〉 and 〈β ·y〉 to get the matrix B. Consider the [v, v]’th entry of B. If

this is positive, then the top-left submatrix of B gives a 1-square of size v. Otherwise

the bottom-right submatrix of B gives a 0-square of size m− v + 1.

The set sizes ensure that both such squares cannot simultaneously exist, since

0-squares and 1-squares must be disjoint.

Lemma 6.2.2. Let f : {0, 1}n×{0, 1}n → {0, 1} be any function with no monochro-

matic square of size greater than t. Then, any LDL computing f must have size at

least 2n/t.

Proof. (The argument below is presented for the Inner Product function in the proof

of Theorem 1 in [TV97].)

Let (L1, a1), (L2, a2), . . . , (Lk, ak) be an LDL of size k computing f . We construct,

for each i ∈ [k − 1], a square Si = (Xi, Yi) of size 2n − it which is a 0-square for all

Lj with j ≤ i. We proceed by induction on i. Let v = t+ 1.

For the base case i = 1, let S0 = (X0, Y0) be the entire 2n × 2n matrix. Suppose

S0 has a square of size v that is a 1-square of L1. Then everywhere in this square, f

will be a1. But f has no monochromatic square as large as v = t + 1. So S0 has no

square of size v that is a 1-square of L1. By Lemma 6.2.1, S0 must then contain a

0-square of L1 of size 2n − v + 1 = 2n − t. This establishes the base case.

For the inductive step, we already have a square Si−1 of size 2n − (i − 1)t which

is a 0-square for L1, L2, . . . Li−1. Within this square, suppose Li has a 1-square of

size v. Then f = ai in this square, giving a monochromatic square of f of size t+ 1.

Since such squares do not exist, we can use Lemma 6.2.1, to conclude that Si−1 must

contain a 0-square of Li of size 2n − (i− 1)t− v + 1 = 2n − it. Since this square, say

Si, is contained in Si−1, it is a 0-square for all Lj with j ≤ i.
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Thus, we have a square Sk−1 of size 2n − (k − 1)t on which L1, L2, . . . , Lk−1 are

0, and Lk = 1 because Lk is the constant function 1. Everywhere on this square, f

evaluates to ak. So Sk−1 is a monochromatic square for f . Hence it cannot have size

more than t. Thus 2n − (k − 1)t ≤ t, yielding k ≥ 2n

t
.

6.3 MAJ◦XOR has no Large Monochromatic Squares

In this section, we show an upper bound and a matching tight lower bound on the

size of a largest monochromatic square in the communication matrix of MAJ ◦ XOR.

Lemma 6.3.1. Let F : {0, 1}n×{0, 1}n → {0, 1} be the function MAJn◦XOR. Then,

for any b ∈ {0, 1}, MF has a monochromatic b-square of size at least
bn/4c∑
i=0

(
n
i

)
.

Proof. Define the sets X, Y, Z as follows:

X = Y = {x ∈ {0, 1}n : |x| ≤ bn/4c}.

Z = {x ∈ {0, 1}n : |x| ≥ n− bn/4c}.

Note that F (x, y) = 0 for all x ∈ X, y ∈ Y , and F (x, z) = 1 for all x ∈ X, z ∈ Z.

Thus (X, Y ) and (X,Z) are a monochromatic 0-square and 1-square respectively,

each of size
bn/4c∑
i=0

(
n
i

)
.

We now show that this bound is tight.

Theorem 6.3.2. Let F : {0, 1}n×{0, 1}n → {0, 1} be the function MAJn ◦XOR. For

odd n, MF has no monochromatic squares of size greater than
bn/4c∑
i=0

(
n
i

)
.

Proof. Suppose, to the contrary that there are sets A,B ⊆ {0, 1}n be such that |A| =
|B| >

∑
i<n/4

(
n
i

)
and A×B is a monochromatic 1-square in MF . By the definition of F ,

this implies d(A,B) > n/2. By Theorem 6.1.6, there exist Hamming balls A0 around

0n, and B0 around 1n such that |A0| = |A|, |B0| = |B| and d(A0, B0) ≥ d(A,B). The

size lower bound enforces that the radius of A0 and B0 must be greater than bn/4c,
and since they are centred on 0n and 1n, it follows that d(A0, B0) < n/2. But then

d(A,B) is also at most n/2. Hence, there exist x ∈ A, y ∈ B such that d(x, y) < n/2,

which means F (x, y) = MAJn ◦ XOR(x, y) = 0, which contradicts our assumption.

Therefore, any monochromatic 1-square in MF has size at most
bn/4c∑
i=0

(
n
i

)
.
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A similar argument, using the additional assumption that n is odd (not required

in the case of 1-squares), shows the same upper bound on the size of monochromatic

0-squares.

Now we can put things together to prove our main theorem in this chapter.

Proof of Theorem 6.1.2. Let sn be the minimum size of an LDL computing MAJn ◦
XOR. By Lemma 6.2.2 and Theorem 6.3.2, for all odd n,

sn ≥
2n∑bn/4c

i=0

(
n
i

)
≥ 2n

2n·H(1/4)
using Stirling’s approximation

≥ 20.18n. using Fact 6.1.8

6.4 LDL’s and the Threshold Circuit Hierarchy

In this section, we see how the class of functions computable by polynomial sized

LDLs fits into the low depth threshold circuit hierarchy. The reader is referred to

Razborov’s survey [Raz92a] for a detailed exposition on the low depth threshold

circuits hierarchy.

6.5 Definitions

Definition 6.5.1 (LDL). Define LDL to be the class of all functions computable by

polynomial sized linear decision lists.

Definition 6.5.2 (L̂DL). Define L̂DL to be the class of all functions computable

by polynomial sized linear decision lists where, furthermore, weights of the linear

threshold queries are integers with values bounded by a polynomial in the number of

variables.

Definition 6.5.3 (PL1). The class PL1 consists of all functions f : {0, 1}n → {0, 1}
for which

∑
S⊆[n]

|f̂(S)| ≤ poly(n).

Definition 6.5.4 (P̂T1). The class P̂T1 consists of all functions f : {0, 1}n → {0, 1}
which can be represented by polynomial sized MAJ ◦ PARITY circuits.
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PL1

P̂T1

PT1

PL∞

MAJ

THR

MAJ ◦MAJ

THR ◦MAJ

THR ◦ THR

LDL

L̂DL

Figure 6.1: Low depth threshold circuit hierarchy

Definition 6.5.5 (PT1). The class PT1 consists of all functions f : {0, 1}n → {0, 1}
which can be represented by polynomial sized THR ◦ PARITY circuits.

Definition 6.5.6 (PL∞). The class PL∞ consists of all functions f : {0, 1}n → {0, 1}
for which max

S⊆[n]
|f̂(S)| ≥ 1

poly(n)
.

Figure 6.1 depicts the currently known status of low depth circuit class contain-

ments, and shows where linear decision lists fit in this hierarchy. Functions witness-

ing various class separations, other than those shown in this thesis, can be found in

Razborov’s survey [Raz92a].

A thick solid arrow from C1 to C2 denotes C1 ( C2, a thin solid arrow from C1 to

C2 denotes C1 ⊆ C2, and a dashed line between C1 and C2 denotes incomparability. In

the figure, we only show the newly established incomparabilities.

The leftmost column has the classes defined based on spectral representation, and

the middle column has the classes based on depth-2 circuits. Concerning these classes,

the picture was already completely clear: All containments shown among classes in

these columns are known to be strict, and wherever no arrow connects two classes,

they are known to be incomparable. Essentially this part of the figure appears in

[GHR92]; a subsequent refinement is the insertion of the class THR ◦MAJ, separated
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from MAJ◦MAJ in [GHR92], from PT1 in [IW10] and most recently from THR◦THR,

proved earlier in this chapter.

The two classes L̂DL and LDL form the new column on the right. In the following

section we explain their position with respect to the other two columns. However

here the picture is not yet completely clear, and there are still several open questions.

6.6 New Results

By definition, MAJ ⊆ L̂DL and THR ⊆ LDL via lists of size 2. The parity function

is known to not be in THR, and it has a simple LDL with 0-1 weights in the query

functions. Thus both these containments are proper, and L̂DL is not contained in

THR. We now observe that, implicit from prior work, L̂DL is not even contained in

MAJ ◦MAJ.

Theorem 6.6.1.

L̂DL * MAJ ◦MAJ.

Proof. Buhrman et al. [BVdW07], and independently Sherstov [She11a], showed that

the PP cost of OMBn ◦ AND2 is Ω(n1/3). By a result of Hajnal et al. [HMP+93], this

implies that any MAJ ◦MAJ circuit computing OMBn ◦ AND2 requires 2Ω(n1/3) size.

Note that OMB can be computed by a linear sized decision list by querying the

variables in decreasing order of their indices. Thus OMB ◦ AND can be computed

by a linear sized decision list of AND’s, and hence by a linear decision list with 0-1

weights.

On the other hand, it is easily seen that MAJn ◦ XOR is in MAJ ◦MAJ, and even

in P̂T1 (see for instance [Bru90]). Combining this with Theorem 6.1.2, we obtain:

Theorem 6.6.2.

P̂T1 * LDL.

Putting together these separations with the known containment P̂T1 ⊆ MAJ◦MAJ,

we obtain a slew of incomparability results.

Corollary 6.6.3. For any class A ∈ {L̂DL, LDL} and B ∈ {P̂T1,MAJ ◦ MAJ}, the

classes A and B are incomparable.

In particular, the classes LDL and MAJ ◦ MAJ are incomparable (as claimed in

Theorem 6.1.1). This completely answers the open question posed by Turán and

Vatan [TV97].
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Impagliazzo and Williams [IW10] showed that the function OR ◦ EQ (also called

Block-Equality) does not contain large monochromatic rectangles (in fact they showed

that it does not contain large monochromatic rectangles under any product distribu-

tion). We now observe that OR ◦ EQ ∈ MAJ ◦ MAJ. Thus OR ◦ EQ also witnesses

MAJ ◦MAJ * LDL.

Theorem 6.6.4.

OR ◦ EQ ∈ MAJ ◦MAJ.

Proof. First observe that OR◦EQ can be computed by a MAJ◦EQ circuit by suitably

padding constants to the input. Next, note that EQ is an exact threshold function,

that is there exist reals a1, . . . , an, b1, . . . , bn, c such that EQ(x, y) = 1 iff
∑n

i=1 aixi +

biyi = c. Hansen and Podolskii [HP10] showed that such functions can be efficiently

simulated by MAJ ◦ THR circuits. However, we do not need the full strength of their

result, and the proof that MAJ ◦EQ ∈ MAJ ◦THR is essentially the same as the proof

of Theorem 4.2.7.

Finally, Goldmann, H̊astad and Razborov [GHR92] showed that MAJ ◦ THR =

MAJ ◦MAJ. Thus, OR ◦ EQ ∈ MAJ ◦MAJ.

Theorem 6.6.5.

L̂DL * PL∞.

Proof. It is easy to see that any symmetric function can be computed by linear sized

linear decision lists where query functions are majority: the linear threshold queries

can be used to determine the Hamming weight of the input, and the decision list

outputs the appropriate answer at each decision.

Bruck [Bru90] showed that the Complete Quadratic function, which is a symmetric

function, is not in PL∞. This function yields the required separation.

Combining Theorems 6.6.2, 6.6.5 yields more incomparability results.

Corollary 6.6.6. For any class A ∈ {L̂DL, LDL} and B ∈ {PT1,PL∞}, the classes A

and B are incomparable.

Finally, as noted in [TV97], LDL is contained in THR ◦ THR. The same argu-

ment shows that L̂DL is contained in THR ◦MAJ. Corollary 6.6.3 implies that these

containments are strict.
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6.7 Conclusions

We exhibited a function (MAJ ◦ XOR) which is efficiently computable in MAJ ◦MAJ,

but which cannot be computed by polynomial sized linear decision lists, resolving an

open question of Turán and Vatan [TV97]. Figure 6.1 depicts where the class LDL,

and its small-weight version L̂DL, fit in the low depth threshold circuit hierarchy. We

showed earlier in this chapter that a decision list of exact threshold functions cannot

be computed by THR ◦MAJ. Some natural questions that arises from our work are

as follows.

• Is LDL ( THR ◦MAJ?

• Is THR ⊆ L̂DL? It is known that THR ⊆ MAJ◦MAJ (see, for example, [GHR92,

AM05, Hof96]). However it does not seem that any of the existing simulations

of THR by MAJ ◦MAJ can be easily modified to show THR ⊆ L̂DL.

• Is PL1 ⊆ LDL? Is PL1 ⊆ L̂DL?1

• Is L̂DL ( LDL?

6.8 References

The results presented in this chapter are based on joint work with Arkadev Chat-

topadhyay, Meena Mahajan and Nitin Saurabh [CMMS18].

1In a subsequent joint work with Arkadev Chattopadhyay and Suhail Sherif [CMS18], these were
resolved in the negative. i.e. PL1 * LDL.
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Chapter 7

Summary and Conclusions

In Chapter 3, we showed a lifting theorem which lifts ‘degree-hardness properties’

of f to ‘weight-hardness’ properties of a lifted version of f , which we denote f op

(equivalently, f op is just f lifted by a constant sized Indexing gadget). With some

more work, the lifting theorem yielded lower bounds on the approximate weight and

signed monomial complexity of symmetric functions, resolving conjectures posed by

Ada, Fawzi and Hatami [AFH12] and Zhang [Zha92], respectively. We then showed

an equivalence between the polynomial margin of a function f and the discrepancy

of f ◦ XOR and used this to reprove some known results and resolve a weak form of

a conjecture by Zhang and Shi [ZS09]. The framework of our proofs is captured in

Figure 7.1 (refer to Figure 3.1 for a more precise framework).

Some questions that remain open are listed below.

• We showed that PP(f ◦ XOR) is tightly characterized by m(f). One could ask

whether the lower bound for BPP(f ◦ XOR) in terms of wt1/3(f) is tight. In

f opf f op ◦ XOR

communication game

BPP complexity

PP complexity

approximate degree

large-error high-
degree approximation

sign degree

approximate weight

polynomial margin

signed monomial complexity
[KP97]

Figure 7.1: Framework of proofs in Chapter 3
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other words, is it true that for every boolean function f ,

BPP(f ◦ XOR) ≤ polylog(wt1/3(f))? (7.1)

In particular, we do not even know whether BPP(f ◦ XOR) ≤ polylog(wt(f)).

Note that this is a special case of a conjecture by Grolmusz [Gro97], who con-

jectured that for any two-party function F, BPP(F ) ≤ polylog(wt(F )).1

• It has been established that ‘degree-hardness’ properties of f lift to hardness of

communication complexity of f ◦PM in the BPP and PP models [She11a]. It is

believed that if f has large sign degree, then UPP(f ◦ PM) is large [RS10]. We

showed in Chapter 3 that a corresponding lifting theorem for XOR functions (in

the BPP and PP models) holds when we start with weight-hardness properties

rather than degree-hardness of f . A natural open question that arises is follows.

Is it true that for any boolean function f ,

UPP(f ◦ XOR) ≥ Ω(log mon±(f))?

In Chapter 4, we exhibited a function with large sign rank. The function was

efficiently describable as a decision list of Equalities. The simplicity of the func-

tion along with the largeness of its sign rank yielded the circuit class separation

THR ◦ MAJ ( THR ◦ THR and the communication class separation PMA * UPP.

The containment THR ◦ MAJ ( THR ◦ THR was open since the work of Goldmann

et al. [GHR92], and was later explicitly posed by Amano and Maruoka [AM05] and

Hansen and Podolskii [HP10]. The communication class separation PMA * UPP

implies S2P * UPP, resolving an open question posed by Göös, Pitassi and Wat-

son [GPW18].

A well-identified frontier in circuit complexity is to prove explicit lower bounds

against THR◦THR. A natural program to take a step in this direction that arises from

our work is to prove lower bounds against decision lists of exact threshold functions.

We additionally exploited a weakness of the class of decision lists of linear threshold

functions observed by Turán and Vatan [TV97] and showed that MAJ◦XOR is not in

this class, completely resolving an open question posed by Turán and Vatan [TV97].

We also proved a sign rank lower bound for certain symmetric XOR functions. In

conclusion, we list some open questions and possible future directions of work.

1In a subsequent joint work with Arkadev Chattopadhyay and Suhail Sherif [CMS18], Grolmusz’s
conjecture and Equation (7.1) were shown to be false.
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• Prove lower bounds, for functions in NP, against decision lists of exact thresh-

olds. It is interesting to note that such lower bounds are known against decision

lists of Equalities (since they are in AC0, for instance).

• We exhibited a function in THR◦THR that requires size 2Ω(n1/4) to be computed

by THR ◦MAJ circuits. Can one improve this separation?

We showed in Chapter 5 that the PPk complexity of GHRNk is Ω
(√

N
)

for k =

O(logN). As mentioned in Section 5.1.2, Sherstov [She16c] shows existence of func-

tions with Ω(N) cost in PPk but that have efficient UPPk protocols. In general,

current techniques do not allow us to go beyond logN players to prove lower bounds

for the cost of even deterministic protocols. This remains one of the most interesting

problems in NOF complexity. However, let us remark that for many of the functions

used in the literature (see for example [Gro94, BGKL03, ACFN15, CS14]), there are

surprisingly efficient protocols when k > logN . Moreover these protocols are typi-

cally deterministic and either simultaneous or barely interactive. On the other hand,

we do not immediately see an efficient randomized interactive protocol for GHRNk at

k > logN .

• Is GHRNk a hard function even for k > logN?

• Can one exhibit an explicit function in UPPk that requires Ω(N) PPk cost?

• Recall our Margin-Discrepancy equivalence from Theorem 3.1.4. This implied

that PP(f ◦ XOR) = Θ
(

log 1
m(f)

)
. Recall that GHRNk could be expressed as

f ◦ XOR, where m(f) is exponentially small. Thus, one might hope that the

Margin-Discrepancy equivalence continues to hold for multi-party communica-

tion. Interestingly, this belief is false! The function MOD4 ◦ XOR3 was shown

to be easy for deterministic 3-player protocols [ACFN15]. Is there a neat char-

acterization of discrepancy of XOR functions in the NOF model?

• Hansen and Podolskii [HP15] showed that (logN)ω(1) unbounded-error lower

bounds for functions in the 3-party NOF model imply super-polynomial lower

bounds against THR ◦ THR. This is another possible line of attack towards

proving strong THR ◦ THR lower bounds.

There are several future directions that stem from our lower bounds against linear

decision lists in Chapter 6. These were discussed in Section 6.7.
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[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. The Landscape
of Communication Complexity Classes. Computational Complexity,
27(2):245–304, 2018. Preliminary version in the 43rd International Col-
loquium on Automata, Languages and Programming (ICALP 2016).

[Gro94] Vince Grolmusz. The BNS Lower Bound for Multi-Party Protocols in
Nearly Optimal. Inf. Comput., 112(1):51–54, 1994.

[Gro97] Vince Grolmusz. On the Power of Circuits with Gates of Low L1 Norms.
Theor. Comput. Sci., 188(1-2):117–128, 1997.
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